找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Potential Theory; David H. Armitage,Stephen J. Gardiner Book 2001 Springer-Verlag London 2001 Analysis.Complex Analysis.Harmonic

[复制链接]
楼主: Daidzein
发表于 2025-3-23 12:19:22 | 显示全部楼层
发表于 2025-3-23 15:25:08 | 显示全部楼层
发表于 2025-3-23 21:25:39 | 显示全部楼层
Translators and Publishers: Friends or Foes?value property: . (.) = . (.) whenever .. Subharmonic functions correspond to one half of this definition — they are upper-finite, upper semicontinuous functionss which satisfy the mean value inequality . (.) ≤ . (.) whenever .. They are allowed to take the value −∞ 00 so that we can include such fu
发表于 2025-3-24 01:41:03 | 显示全部楼层
Potential Performance Texts for , and , of Lebesgue measure zero. Indeed, polar sets are the negligible sets of potential theory and will be seen to play a role reminiscent of that played by sets of measure zero in integration. A useful result proved in Section 5.2 is that closed polar sets are removable singularities for lower-bounded s
发表于 2025-3-24 02:47:50 | 显示全部楼层
Artifacts: The Early Plays Reconsidered,) → .(.) as . → . for each .. Such a function . is called the . on Ω with boundary function ., and the maximum principle guarantees the uniqueness of the solution if it exists. For example, if Ω is either a ball or a half-space and . ∈ .(δ.Ω), then the solution of the Dirichlet problem certainly exi
发表于 2025-3-24 10:01:46 | 显示全部楼层
Two Kinds of Clothing: , and ,,e harmonic function on . has finite non-tangential limits at σ-almost every boundary point (Fatou’s theorem). The notions of radial and non-tangential limits are clearly unsuitable for the study of boundary behaviour in general domains. To overcome this difficulty, we will develop the ideas of the p
发表于 2025-3-24 13:47:31 | 显示全部楼层
https://doi.org/10.1007/978-1-4471-0233-5Analysis; Complex Analysis; Harmonic Functions; Poisson integral; Potential theory; Real Analysis; calculu
发表于 2025-3-24 18:47:07 | 显示全部楼层
发表于 2025-3-24 21:13:28 | 显示全部楼层
发表于 2025-3-25 00:06:32 | 显示全部楼层
David H. Armitage,Stephen J. GardinerWritten by the world leaders in potential theory.Competitive titles are now out of print: an updated introductory text has been long awaited
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 17:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表