找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Nonintegrability, Quantum Chaos; Andreas Knauf,Yakov G. Sinai,Viviane Baladi Book 1997 Springer Basel AG 1997 Finite.Invariant.a

[复制链接]
查看: 18494|回复: 40
发表于 2025-3-21 18:04:05 | 显示全部楼层 |阅读模式
书目名称Classical Nonintegrability, Quantum Chaos
编辑Andreas Knauf,Yakov G. Sinai,Viviane Baladi
视频videohttp://file.papertrans.cn/228/227113/227113.mp4
丛书名称Oberwolfach Seminars
图书封面Titlebook: Classical Nonintegrability, Quantum Chaos;  Andreas Knauf,Yakov G. Sinai,Viviane Baladi Book 1997 Springer Basel AG 1997 Finite.Invariant.a
描述Our DMV Seminar on ‘Classical Nonintegrability, Quantum Chaos‘ intended to introduce students and beginning researchers to the techniques applied in nonin­ tegrable classical and quantum dynamics. Several of these lectures are collected in this volume. The basic phenomenon of nonlinear dynamics is mixing in phase space, lead­ ing to a positive dynamical entropy and a loss of information about the initial state. The nonlinear motion in phase space gives rise to a linear action on phase space functions which in the case of iterated maps is given by a so-called transfer operator. Good mixing rates lead to a spectral gap for this operator. Similar to the use made of the Riemann zeta function in the investigation of the prime numbers, dynamical zeta functions are now being applied in nonlinear dynamics. In Chapter 2 V. Baladi first introduces dynamical zeta functions and transfer operators, illustrating and motivating these notions with a simple one-dimensional dynamical system. Then she presents a commented list of useful references, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A.
出版日期Book 1997
关键词Finite; Invariant; analysis; ergodic theory; function; geometry; mathematical physics; mathematics; nonlinea
版次1
doihttps://doi.org/10.1007/978-3-0348-8932-2
isbn_softcover978-3-7643-5708-5
isbn_ebook978-3-0348-8932-2Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 1997
The information of publication is updating

书目名称Classical Nonintegrability, Quantum Chaos影响因子(影响力)




书目名称Classical Nonintegrability, Quantum Chaos影响因子(影响力)学科排名




书目名称Classical Nonintegrability, Quantum Chaos网络公开度




书目名称Classical Nonintegrability, Quantum Chaos网络公开度学科排名




书目名称Classical Nonintegrability, Quantum Chaos被引频次




书目名称Classical Nonintegrability, Quantum Chaos被引频次学科排名




书目名称Classical Nonintegrability, Quantum Chaos年度引用




书目名称Classical Nonintegrability, Quantum Chaos年度引用学科排名




书目名称Classical Nonintegrability, Quantum Chaos读者反馈




书目名称Classical Nonintegrability, Quantum Chaos读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:42:39 | 显示全部楼层
1661-237X nces, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A.978-3-7643-5708-5978-3-0348-8932-2Series ISSN 1661-237X Series E-ISSN 2296-5041
发表于 2025-3-22 02:12:18 | 显示全部楼层
发表于 2025-3-22 07:22:17 | 显示全部楼层
发表于 2025-3-22 10:33:14 | 显示全部楼层
发表于 2025-3-22 16:50:31 | 显示全部楼层
发表于 2025-3-22 17:33:37 | 显示全部楼层
发表于 2025-3-23 01:16:28 | 显示全部楼层
Lecture Notes in Computer ScienceScattering experiments are a primary source of our knowledge about elementary particles, atoms and molecules. Similarly celestial bodies are scattered by the sun or the whole solar system.
发表于 2025-3-23 03:19:54 | 显示全部楼层
Alessio Ferrari,Birgit PenzenstadlerQuantum chaos is defined to be the quantum mechanics for a classically chaoticor, to be definite, ergodic — motion.
发表于 2025-3-23 09:06:52 | 显示全部楼层
Lecture Notes in Computer ScienceThe notion of ergodicity was introduced by L. Boltzmann in connection with Foundations of Statistical Mechanics. Now its role for Statistical Mechanics is not so much clear but it is very important for the theory of dynamical systems and deterministic chaos.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 08:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表