找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 2012Latest edition Springer Basel 2012 Inner product space.L

[复制链接]
楼主: 矜持
发表于 2025-3-23 12:07:08 | 显示全部楼层
https://doi.org/10.1057/9780230606975Let (.) and (.) be arbitrary real inner product spaces each containing at least two linearly independent elements. However, as in the earlier chapters we do not exclude the case that there exist infinite linearly independent subsets of . or ..
发表于 2025-3-23 15:07:12 | 显示全部楼层
Translation Groups,A ..is a real vector space X together with a mapping .satisfying . for all ...
发表于 2025-3-23 19:03:15 | 显示全部楼层
Euclidean and Hyperbolic Geometry,. designates again an arbitrary real inner product space containing two linearly independent elements. As throughout the whole book, we do not exclude the case that there exists an infinite and linearly independent subset of ..
发表于 2025-3-24 00:48:12 | 显示全部楼层
发表于 2025-3-24 04:28:34 | 显示全部楼层
发表于 2025-3-24 09:58:08 | 显示全部楼层
,,–Projective Mappings, Isomorphism Theorems,Let (.) and (.) be arbitrary real inner product spaces each containing at least two linearly independent elements. However, as in the earlier chapters we do not exclude the case that there exist infinite linearly independent subsets of . or ..
发表于 2025-3-24 14:20:58 | 显示全部楼层
发表于 2025-3-24 16:59:25 | 显示全部楼层
https://doi.org/10.1057/9780230606975ill be a plane of ℝ.. This simple and great idea of Gottfried Wilhelm Leibniz (1646–1716) allows us to characterize hyperplanes of euclidean, of hyperbolic geometry, of spherical geometry, the geometries of Lorentz–Minkowski and de Sitter through the (finite or infinite) dimensions . 2 of . as will
发表于 2025-3-24 22:23:36 | 显示全部楼层
发表于 2025-3-25 02:39:12 | 显示全部楼层
metry, the geometries of Lorentz-Minkowski and de Sitter, and this through finite or infinite dimensions greater than 1. .Another new and fundamental result in this edition concerns the representation of hyperb978-3-0348-0741-8978-3-0348-0420-2
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-18 16:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表