找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 2012Latest edition Springer Basel 2012 Inner product space.L

[复制链接]
查看: 16204|回复: 38
发表于 2025-3-21 19:57:12 | 显示全部楼层 |阅读模式
书目名称Classical Geometries in Modern Contexts
副标题Geometry of Real Inn
编辑Walter Benz
视频videohttp://file.papertrans.cn/228/227073/227073.mp4
概述Dimension-free presentation Inclusion of proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses.Common presentation for finite and infinite dimensional re
图书封面Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 2012Latest edition Springer Basel 2012 Inner product space.L
描述.The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2. It characterizes both euclidean and hyperbolic geometry with respect to natural properties of (general) translations and general distances of X. Also for these spaces X, it studies the sphere geometries of Möbius and Lie as well as geometries where Lorentz transformations play the key role..Proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses are included, such as for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. .New to this third edition is a chapter dealing with a simple and great idea of Leibniz that allows us to characterize, for these same spaces X, hyperplanes of euclidean, hyperbolic geometry, or spherical geometry, the geometries of Lorentz-Minkowski and de Sitter, and this through finite or infinite dimensions greater than 1. .Another new and fundamental result in this edition concerns the representation of hyperb
出版日期Book 2012Latest edition
关键词Inner product space; Lorentz transformation; classical geometry; hyperbolic geometry; sphere geometry
版次3
doihttps://doi.org/10.1007/978-3-0348-0420-2
isbn_softcover978-3-0348-0741-8
isbn_ebook978-3-0348-0420-2
copyrightSpringer Basel 2012
The information of publication is updating

书目名称Classical Geometries in Modern Contexts影响因子(影响力)




书目名称Classical Geometries in Modern Contexts影响因子(影响力)学科排名




书目名称Classical Geometries in Modern Contexts网络公开度




书目名称Classical Geometries in Modern Contexts网络公开度学科排名




书目名称Classical Geometries in Modern Contexts被引频次




书目名称Classical Geometries in Modern Contexts被引频次学科排名




书目名称Classical Geometries in Modern Contexts年度引用




书目名称Classical Geometries in Modern Contexts年度引用学科排名




书目名称Classical Geometries in Modern Contexts读者反馈




书目名称Classical Geometries in Modern Contexts读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:29:49 | 显示全部楼层
发表于 2025-3-22 04:13:08 | 显示全部楼层
发表于 2025-3-22 08:30:06 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-0420-2Inner product space; Lorentz transformation; classical geometry; hyperbolic geometry; sphere geometry
发表于 2025-3-22 09:52:51 | 显示全部楼层
发表于 2025-3-22 14:25:57 | 显示全部楼层
http://image.papertrans.cn/c/image/227073.jpg
发表于 2025-3-22 19:45:55 | 显示全部楼层
https://doi.org/10.1057/9780230287440A ..is a real vector space X together with a mapping .satisfying . for all ...
发表于 2025-3-23 01:13:57 | 显示全部楼层
发表于 2025-3-23 03:13:53 | 显示全部楼层
发表于 2025-3-23 08:21:23 | 显示全部楼层
First Person Suspect, or, the Enemy Within …As in the chapters before, . denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-18 16:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表