找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Diophantine Equations; Vladimir G. Sprindžuk,Ross Talent Book 1993 Springer-Verlag Berlin Heidelberg 1993 Algebraic Number Theor

[复制链接]
查看: 25996|回复: 43
发表于 2025-3-21 18:21:31 | 显示全部楼层 |阅读模式
书目名称Classical Diophantine Equations
编辑Vladimir G. Sprindžuk,Ross Talent
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Classical Diophantine Equations;  Vladimir G. Sprindžuk,Ross Talent Book 1993 Springer-Verlag Berlin Heidelberg 1993 Algebraic Number Theor
描述The author had initiated a revision and translation of"Classical Diophantine Equations" prior to his death.Given the rapid advances intranscendence theory anddiophantine approximation over recent years, one might fearthat the present work, originally published in Russian in1982, is mostly superseded. That is not so. A certain amountofupdating had been prepared by the author himself beforehis untimely death. Some further revision was prepared byclose colleagues.The first seven chapters provide a detailed, virtuallyexhaustive, discussion of the theory of lower bounds forlinear forms in the logarithms of algebraic numbers and itsapplications to obtaining upper bounds for solutions to theeponymous classical diophantine equations. The detail mayseem stark--- the author fears that the reader may reactmuch as does the tourist onfirst seeing the centrePompidou; notwithstanding that, Sprind zuk maintainsapleasant and chatty approach, full of wise and interestingremarks. His emphases well warrant, now that the bookappears in English, close studyand emulation. In particularthose emphases allow him to devote the eighthchapter to ananalysis of the interrelationship of the class number ofalgebra
出版日期Book 1993
关键词Algebraic Number Theory; Arithmetic Geometry; Class Number; Diophantine Equation; Diophantine approximat
版次1
doihttps://doi.org/10.1007/BFb0073786
isbn_softcover978-3-540-57359-3
isbn_ebook978-3-540-48083-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

书目名称Classical Diophantine Equations影响因子(影响力)




书目名称Classical Diophantine Equations影响因子(影响力)学科排名




书目名称Classical Diophantine Equations网络公开度




书目名称Classical Diophantine Equations网络公开度学科排名




书目名称Classical Diophantine Equations被引频次




书目名称Classical Diophantine Equations被引频次学科排名




书目名称Classical Diophantine Equations年度引用




书目名称Classical Diophantine Equations年度引用学科排名




书目名称Classical Diophantine Equations读者反馈




书目名称Classical Diophantine Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:08 | 显示全部楼层
发表于 2025-3-22 02:17:29 | 显示全部楼层
Reducibility of polynomials and diophantine equations,ility theorem and to describe all abelian points on algebraic curves. The methods used are quite independent of the theory of linear forms in the logarithms of algebraic numbers. and rely on the study of the arithmetic structure of sums of algebraic power series in all metrics of the field of rational numbers.
发表于 2025-3-22 06:39:08 | 显示全部楼层
Representations of Early Byzantine Empressesprovement of Liouville‘s inequality and its generalisations; and we will see how fundamental parameters of the equation, in particular the height of the form and of the number represented by the form, influence the magnitude of the solutions.
发表于 2025-3-22 11:11:39 | 显示全部楼层
Elizabeth’s Presence in the Jacobean Masqueolynomial having at least two simple roots represents only a finite number of powers of integers with exponents greater than 2. We also give an analysis of S-integer solutions of the Catalan equation. *** DIRECT SUPPORT *** A00I6B17 00003
发表于 2025-3-22 13:22:03 | 显示全部楼层
https://doi.org/10.1057/9780230307261ility theorem and to describe all abelian points on algebraic curves. The methods used are quite independent of the theory of linear forms in the logarithms of algebraic numbers. and rely on the study of the arithmetic structure of sums of algebraic power series in all metrics of the field of rational numbers.
发表于 2025-3-22 19:34:00 | 显示全部楼层
发表于 2025-3-23 01:09:23 | 显示全部楼层
发表于 2025-3-23 04:16:16 | 显示全部楼层
发表于 2025-3-23 05:53:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 15:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表