找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classes of Linear Operators Vol. I; Israel Gohberg,Seymour Goldberg,Marinus A. Kaashoe Book 1990 Springer Basel AG 1990 Area.Eigenvalue.Fu

[复制链接]
楼主: 指责
发表于 2025-3-23 12:19:19 | 显示全部楼层
Fredholm Operatorsns will concern Wiener-Hopf integral operators and Toeplitz operators which we shall deal with in the next chapters and in Volume II. The first section contains the definition of a Fredholm operator and the first examples. In Section 2 we pay special attention to operators with closed range. The bas
发表于 2025-3-23 14:32:31 | 显示全部楼层
发表于 2025-3-23 20:29:27 | 显示全部楼层
Unbounded Linear Operatorsrators and their conjugates are analyzed with much attention paid to ordinary and partial differential operators. In particular, maximal and minimal operators and the properties of their inverses are studied. The chapter is divided into 6 sections. The first two sections are devoted to the general t
发表于 2025-3-23 22:57:32 | 显示全部楼层
Eigenvalues of Finite Typeeigenvalues of finite matrices. The problem of completeness of eigenvectors and generalized eigenvectors appears in a natural way. The results are applied to compact operators. This chapter also contains limit theorems for spectra and the infinite dimensional version of Schur’s lemma about triangular forms.
发表于 2025-3-24 04:10:01 | 显示全部楼层
发表于 2025-3-24 09:23:47 | 显示全部楼层
Spectral Theory for Bounded Selfadjoint Operatorstor Δ. is the orthogonal projection onto the eigenspace Ker(λ. and the series converges in the operator norm. The aim of this chapter is to obtain an analogous representation for an arbitrary bounded selfadjoint operator.
发表于 2025-3-24 12:31:47 | 显示全部楼层
发表于 2025-3-24 17:22:09 | 显示全部楼层
Integral Operators with Semi-Separable Kernelsnversion properties may be read off from certain finite dimensional operators. In the case when the operators are also trace class, their trace and determinant may be computed explicitly in terms of the associated finite dimensional operators.
发表于 2025-3-24 20:35:09 | 显示全部楼层
发表于 2025-3-24 23:33:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 05:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表