找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chinese Computational Linguistics; 18th China National Maosong Sun,Xuanjing Huang,Yang Liu Conference proceedings 2019 Springer Nature Swi

[复制链接]
楼主: 压缩
发表于 2025-3-28 14:37:19 | 显示全部楼层
Adversarial Domain Adaptation for Chinese Semantic Dependency Graph Parsingponent we proposed, the model can effectively improve the performance in the target domain. On the CCSD dataset, our model achieved state-of-the-art performance with significant improvement compared to the strong baseline model.
发表于 2025-3-28 22:02:37 | 显示全部楼层
发表于 2025-3-29 01:43:09 | 显示全部楼层
Title-Aware Neural News Topic Predictionnews to learn unified news representations. In the title view, we learn title representations from words via a long-short term memory (LSTM) network, and use attention mechanism to select important words according to their contextual representations. In the body view, we propose to use a hierarchica
发表于 2025-3-29 06:32:56 | 显示全部楼层
Lecture Notes in Computer Sciencet in BNC. They are . and . for the verb ., . for the verb ., and . for the verb .. (3) Some colligational patterns occur less frequently in CCE than those in BNC, such as the patterns . and . for the verb . and . for the verb ., and . for the verb .. (4) No new colligational patterns have been found
发表于 2025-3-29 09:50:06 | 显示全部楼层
发表于 2025-3-29 11:39:17 | 显示全部楼层
发表于 2025-3-29 18:00:35 | 显示全部楼层
发表于 2025-3-29 22:26:35 | 显示全部楼层
Olivier Bournez,Enrico Formenti,Igor PotapovWe evaluate our model on two tasks: Answer Selection and Textual Entailment. Experimental results show the effectiveness of our model, which achieves the state-of-the-art performance on WikiQA dataset.
发表于 2025-3-30 00:28:45 | 显示全部楼层
Ilaria De Crescenzo,Salvatore La Torrenews to learn unified news representations. In the title view, we learn title representations from words via a long-short term memory (LSTM) network, and use attention mechanism to select important words according to their contextual representations. In the body view, we propose to use a hierarchica
发表于 2025-3-30 06:42:01 | 显示全部楼层
https://doi.org/10.1007/978-3-030-32381-3artificial intelligence; classification; information extraction; language resources; machine translation
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 07:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表