找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Characters and Blocks of Solvable Groups; A User’s Guide to La James Cossey,Yong Yang Book 2024 The Editor(s) (if applicable) and The Autho

[复制链接]
楼主: 租期
发表于 2025-3-28 14:51:17 | 显示全部楼层
Base SizesIf . acts on a set ., a base for the action is defined to be a set of elements of . whose centralizers in . intersect trivially. The focus in this chapter is to prove a number of results, mostly by Seress and Espuelas, that give minimal base sizes for a number of different types of solvable group actions.
发表于 2025-3-28 19:00:18 | 显示全部楼层
发表于 2025-3-28 23:32:58 | 显示全部楼层
发表于 2025-3-29 05:41:59 | 显示全部楼层
发表于 2025-3-29 10:24:55 | 显示全部楼层
发表于 2025-3-29 12:21:42 | 显示全部楼层
The Fixed Point Subspace of an Elemented-point subspaces than we proved in earlier chapters. We then use these improved bounds in the discussion of Dolfi’s powerful result, which shows if . is solvable and acts coprimely on . via automorphisms, then there are two elements of . whose centralizers in . intersect trivially. This proof draw
发表于 2025-3-29 15:39:01 | 显示全部楼层
发表于 2025-3-29 23:43:01 | 显示全部楼层
Huppert’s , Conjectureable group .. We begin with a subtle variation of Gluck’s permutation lemma, and then use another large orbit theorem to prove the best currently known bound for Huppert’s conjecture for solvable groups.
发表于 2025-3-30 03:29:56 | 显示全部楼层
Other Applications of Large Orbit Theoremsscussing certain induction and restriction theorems that require a variation of Dolfi’s large orbit theorem from Chapter 8. We then discuss a result of Moreto and Wolf that determines that number of characters needed to “cover” the order of the solvable group .. In the last section we discuss, witho
发表于 2025-3-30 04:24:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 22:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表