找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids; Ruy Exel,David R. Pitts Book 2022 Springer Nature Switzerland AG 202

[复制链接]
楼主: 呻吟
发表于 2025-3-23 10:35:05 | 显示全部楼层
发表于 2025-3-23 17:03:29 | 显示全部楼层
发表于 2025-3-23 20:25:28 | 显示全部楼层
发表于 2025-3-23 23:00:53 | 显示全部楼层
发表于 2025-3-24 04:02:17 | 显示全部楼层
https://doi.org/10.1007/978-3-8348-9205-8So far our standing assumptions have always involved a fixed inclusion of C*-algebras. From this point on we will instead concentrate our attention on groupoids which will in due time lead to a fundamental example of inclusions of C*-algebras.
发表于 2025-3-24 09:00:41 | 显示全部楼层
Digitale Signatur und elektronische Form,Our goal in this section is to prove (5.9) below, which is a basic result in the theory of twisted groupoid C*-algebras. We have been unable to locate this result in the literature in the generality we require.
发表于 2025-3-24 11:08:56 | 显示全部楼层
Inclusions,One of the most basic aspects of our techniques, to be developed in this and the following section, is the study of the algebraic relationship between ideals in a C*-algebra ., on the one hand, and a larger C*-algebra . containing ., on the other.
发表于 2025-3-24 18:32:31 | 显示全部楼层
Groupoids,So far our standing assumptions have always involved a fixed inclusion of C*-algebras. From this point on we will instead concentrate our attention on groupoids which will in due time lead to a fundamental example of inclusions of C*-algebras.
发表于 2025-3-24 19:56:25 | 显示全部楼层
Appendix: Isotropy Projection,Our goal in this section is to prove (5.9) below, which is a basic result in the theory of twisted groupoid C*-algebras. We have been unable to locate this result in the literature in the generality we require.
发表于 2025-3-24 23:51:16 | 显示全部楼层
0075-8434 h broader class of C*-algebras. .This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fiel978-3-031-05512-6978-3-031-05513-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 00:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表