找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cellular Automata and Discrete Complex Systems; 21st IFIP WG 1.5 Int Jarkko Kari Conference proceedings 2015 IFIP International Federation

[复制链接]
楼主: 遮蔽
发表于 2025-3-28 16:18:47 | 显示全部楼层
发表于 2025-3-28 20:53:26 | 显示全部楼层
发表于 2025-3-29 00:28:13 | 显示全部楼层
Welfare Professions and the LawWe define, as local quantities, the least energy and momentum allowed by quantum mechanics and special relativity for physical realizations of some classical lattice dynamics. These definitions depend on local rates of finite-state change. In two example dynamics, we see that these rates evolve like classical mechanical energy and momentum.
发表于 2025-3-29 06:03:57 | 显示全部楼层
发表于 2025-3-29 09:22:47 | 显示全部楼层
发表于 2025-3-29 14:35:12 | 显示全部楼层
发表于 2025-3-29 16:50:14 | 显示全部楼层
Groups and Monoids of Cellular Automata,We discuss groups and monoids defined by cellular automata on full shifts, sofic shifts, minimal subshifts, countable subshifts and coded and synchronized systems. Both purely group-theoretic properties and issues of decidability are considered.
发表于 2025-3-29 23:08:39 | 显示全部楼层
发表于 2025-3-30 02:37:25 | 显示全部楼层
Group-Walking Automata,In the setting of symbolic dynamics on discrete finitely generated infinite groups, we define a model of multi-headed finite automata that walk on Cayley graphs, and use it to define subshifts. We characterize the torsion groups (also known as periodic groups) as those on which the group-walking automata are strictly weaker than Turing machines.
发表于 2025-3-30 07:52:27 | 显示全部楼层
Recognition of Linear-Slender Context-Free Languages by Real Time One-Way Cellular Automata,A linear-slender context-free language is a context-free language whose number of words of length . is linear in .. Its structure has been finely characterized in a work of Ilie, Rozenberg and Salomaa. Thanks to this characterization, we show that every linear-slender context-free language is recognizable by a real time one-way cellular automaton.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-19 00:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表