找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cauchy Problem for Differential Operators with Double Characteristics; Non-Effectively Hype Tatsuo Nishitani Book 2017 Springer Internation

[复制链接]
查看: 12573|回复: 40
发表于 2025-3-21 17:27:10 | 显示全部楼层 |阅读模式
书目名称Cauchy Problem for Differential Operators with Double Characteristics
副标题Non-Effectively Hype
编辑Tatsuo Nishitani
视频video
概述Features thorough discussions on well/ill-posedness of the Cauchy problem for di?erential operators with double characteristics of non-e?ectively hyperbolic type.Takes a uni?ed approach combining geom
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Cauchy Problem for Differential Operators with Double Characteristics; Non-Effectively Hype Tatsuo Nishitani Book 2017 Springer Internation
描述Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem..A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms..If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of
出版日期Book 2017
关键词Cauchy problem; Well/ill-posedness; Non-effectively hyperbolic; IPH condition; Microlocal energy estimat
版次1
doihttps://doi.org/10.1007/978-3-319-67612-8
isbn_softcover978-3-319-67611-1
isbn_ebook978-3-319-67612-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Cauchy Problem for Differential Operators with Double Characteristics影响因子(影响力)




书目名称Cauchy Problem for Differential Operators with Double Characteristics影响因子(影响力)学科排名




书目名称Cauchy Problem for Differential Operators with Double Characteristics网络公开度




书目名称Cauchy Problem for Differential Operators with Double Characteristics网络公开度学科排名




书目名称Cauchy Problem for Differential Operators with Double Characteristics被引频次




书目名称Cauchy Problem for Differential Operators with Double Characteristics被引频次学科排名




书目名称Cauchy Problem for Differential Operators with Double Characteristics年度引用




书目名称Cauchy Problem for Differential Operators with Double Characteristics年度引用学科排名




书目名称Cauchy Problem for Differential Operators with Double Characteristics读者反馈




书目名称Cauchy Problem for Differential Operators with Double Characteristics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:18:50 | 显示全部楼层
发表于 2025-3-22 02:38:28 | 显示全部楼层
发表于 2025-3-22 07:43:58 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/c/image/222608.jpg
发表于 2025-3-22 09:32:28 | 显示全部楼层
发表于 2025-3-22 14:13:01 | 显示全部楼层
发表于 2025-3-22 19:37:41 | 显示全部楼层
发表于 2025-3-22 22:06:56 | 显示全部楼层
Per Alstergren DDS, PhD, Med Drproved microlocal energy estimates, the usual next procedure would be to obtain “local” energy estimates by partition of unity. Then one must get rid of the errors caused by the partition of unity. Sometimes it happens that the microlocal energy estimates is too weak to control such errors. In this
发表于 2025-3-23 04:21:52 | 显示全部楼层
发表于 2025-3-23 05:51:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 13:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表