找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Categorical Topology; Proceedings of the L Eraldo Giuli Conference proceedings 1996 Kluwer Academic Publishers 1996 Category theory.Compact

[复制链接]
查看: 9312|回复: 64
发表于 2025-3-21 16:55:24 | 显示全部楼层 |阅读模式
书目名称Categorical Topology
副标题Proceedings of the L
编辑Eraldo Giuli
视频video
图书封面Titlebook: Categorical Topology; Proceedings of the L Eraldo Giuli Conference proceedings 1996 Kluwer Academic Publishers 1996 Category theory.Compact
出版日期Conference proceedings 1996
关键词Category theory; Compactification; Topology; function; theorem
版次1
doihttps://doi.org/10.1007/978-94-009-0263-3
isbn_softcover978-94-010-6602-0
isbn_ebook978-94-009-0263-3
copyrightKluwer Academic Publishers 1996
The information of publication is updating

书目名称Categorical Topology影响因子(影响力)




书目名称Categorical Topology影响因子(影响力)学科排名




书目名称Categorical Topology网络公开度




书目名称Categorical Topology网络公开度学科排名




书目名称Categorical Topology被引频次




书目名称Categorical Topology被引频次学科排名




书目名称Categorical Topology年度引用




书目名称Categorical Topology年度引用学科排名




书目名称Categorical Topology读者反馈




书目名称Categorical Topology读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:28:38 | 显示全部楼层
Reflective Relatives of Adjunctions,ation . of . to .. Is it true for an arbitrary space . with this unique extension property to be already compact Hausdorff? No, there is a sophisticated counterexample [8]. Consequently, it makes sense to investigate the full subcategory of all such spaces in ., say .., which turns out to be reflect
发表于 2025-3-22 03:16:05 | 显示全部楼层
发表于 2025-3-22 06:40:25 | 显示全部楼层
Generalized Reflective cum Coreflective Classes in Top and Unif,eflective or projective, is investigated in a more general setting using cone and cocone modifications of the classes used in the problem. We look also at the problem for uniform spaces. Typical results: There is no nontrivial multiprojective and orthogonal class of topological spaces; There is a re
发表于 2025-3-22 12:42:31 | 显示全部楼层
On the Largest Coreflective Cartesian Closed Subconstruct of ,,struct of .. This implies that in any coreflective subconstruct of ., exponential objects are finitely generated. Moreover, in any finitely productive, coreflective subconstruct, exponential objects are precisely those objects of the subconstruct that are finitely generated. We give a counterexample
发表于 2025-3-22 15:31:14 | 显示全部楼层
,α-Sober Spaces via the Orthogonal Closure Operator,ober spaces. Here, we define α-sober space for each α ⩾ 2 in such a way that the reflective hull of α in ... is the subcategory of α-sober spaces. Moreover, we obtain an order-preserving bijective correspondence between a proper class of ordinals and the corresponding (epi)reflective hulls. Our main
发表于 2025-3-22 21:06:57 | 显示全部楼层
发表于 2025-3-22 21:13:38 | 显示全部楼层
Connectedness, Disconnectedness and Closure Operators, A More General Approach,rphisms is introduced. This notion yields a Galois connection that can be seen as a generalization of the classical connectedness-disconnectedness correspondence (also called torsion-torsion free in algebraic contexts). It is shown that this Galois connection factors through the collection of all cl
发表于 2025-3-23 02:59:57 | 显示全部楼层
发表于 2025-3-23 05:49:54 | 显示全部楼层
Tychonoff compactifications and ,-completions of mappings and rings of continuous functions,eans of presheaves of subrings of the rings .*(...) where . is open in .. In fact, a general description of all Tychonoff compactifications of a Tychonoff mapping . : . — . is obtained. Our methods yield even a characterization of all Tychonoff compactifications of Tychonoff continuous images of . i
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 23:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表