找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Categorical Topology; Proceedings of the L Eraldo Giuli Conference proceedings 1996 Kluwer Academic Publishers 1996 Category theory.Compact

[复制链接]
楼主: Exaltation
发表于 2025-3-28 14:55:30 | 显示全部楼层
Ravi P. Agarwal,Donal O‘Regan,Samir H. Sakerrphisms is introduced. This notion yields a Galois connection that can be seen as a generalization of the classical connectedness-disconnectedness correspondence (also called torsion-torsion free in algebraic contexts). It is shown that this Galois connection factors through the collection of all cl
发表于 2025-3-28 20:25:25 | 显示全部楼层
Alejandro Gugliucci,Teresita Meninied, e. g., by Grothendieck topologies) into the classical theory of closure operators, this notion and its dual also provides insight into the structure of the lattice of all closure operators. A suitable adjustment of the notion of orthogonality between composable pairs enables us to develop the th
发表于 2025-3-29 02:02:04 | 显示全部楼层
发表于 2025-3-29 04:12:34 | 显示全部楼层
https://doi.org/10.1007/978-3-319-07431-3rator . w.r.t. the class . in the sense of [DG], the full subcategory Δ( .) of those objects X ∈ . for which the diagonal δx: . is .-dense, satisfies all the stability properties that one expects a category of “connected” objects to have. In fact, subject to suitable conditions on the given data, we
发表于 2025-3-29 09:57:12 | 显示全部楼层
Overview: 978-94-010-6602-0978-94-009-0263-3
发表于 2025-3-29 14:02:13 | 显示全部楼层
https://doi.org/10.1007/978-3-319-05398-1ed continuous maps is established for proximity spaces and proximally continuous maps by an internal method of proof. A new kind of filter, called proximally prime filter, arises naturally as a tool in this theory.
发表于 2025-3-29 17:22:53 | 显示全部楼层
Ravi P. Agarwal,Donal O‘Regan,Samir H. Sakerrphisms is introduced. This notion yields a Galois connection that can be seen as a generalization of the classical connectedness-disconnectedness correspondence (also called torsion-torsion free in algebraic contexts). It is shown that this Galois connection factors through the collection of all closure operators on . with respect to .).
发表于 2025-3-29 22:07:18 | 显示全部楼层
发表于 2025-3-30 03:21:22 | 显示全部楼层
发表于 2025-3-30 07:26:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 00:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表