找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Catalan‘s Conjecture; René Schoof Textbook 2008 Springer-Verlag London 2008 Algebra.Arithmetic.Catalan‘s conjecture.algebraic number theor

[复制链接]
查看: 7778|回复: 57
发表于 2025-3-21 16:19:26 | 显示全部楼层 |阅读模式
书目名称Catalan‘s Conjecture
编辑René Schoof
视频video
概述Provides complete proofs of a spectacular recent result in number theory.Accessible to the non-specialist: requires little more than a basic mathematical background and some knowledge of elementary nu
丛书名称Universitext
图书封面Titlebook: Catalan‘s Conjecture;  René Schoof Textbook 2008 Springer-Verlag London 2008 Algebra.Arithmetic.Catalan‘s conjecture.algebraic number theor
描述.Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it...Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further...Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem..
出版日期Textbook 2008
关键词Algebra; Arithmetic; Catalan‘s conjecture; algebraic number theory; diophantine equations; number theory;
版次1
doihttps://doi.org/10.1007/978-1-84800-185-5
isbn_softcover978-1-84800-184-8
isbn_ebook978-1-84800-185-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag London 2008
The information of publication is updating

书目名称Catalan‘s Conjecture影响因子(影响力)




书目名称Catalan‘s Conjecture影响因子(影响力)学科排名




书目名称Catalan‘s Conjecture网络公开度




书目名称Catalan‘s Conjecture网络公开度学科排名




书目名称Catalan‘s Conjecture被引频次




书目名称Catalan‘s Conjecture被引频次学科排名




书目名称Catalan‘s Conjecture年度引用




书目名称Catalan‘s Conjecture年度引用学科排名




书目名称Catalan‘s Conjecture读者反馈




书目名称Catalan‘s Conjecture读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:34 | 显示全部楼层
发表于 2025-3-22 00:24:29 | 显示全部楼层
发表于 2025-3-22 07:53:22 | 显示全部楼层
Textbook 2008ther...Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem..
发表于 2025-3-22 09:25:35 | 显示全部楼层
,Runge’s Method,hod in a 1887 paper in Crelle’s journal [40]. In this section, we explain it along the lines of a short unpublished note by Yuri Bilu. This involves somewhat more mathematics than is required for the rest of the notes. The method is applied to prove theorems of Cassels and Mihăilescu that regard Catalan’s equation.
发表于 2025-3-22 14:53:13 | 显示全部楼层
发表于 2025-3-22 18:20:17 | 显示全部楼层
How Can Revived Originals Become Reality?hod in a 1887 paper in Crelle’s journal [40]. In this section, we explain it along the lines of a short unpublished note by Yuri Bilu. This involves somewhat more mathematics than is required for the rest of the notes. The method is applied to prove theorems of Cassels and Mihăilescu that regard Catalan’s equation.
发表于 2025-3-22 23:51:44 | 显示全部楼层
发表于 2025-3-23 02:25:00 | 显示全部楼层
发表于 2025-3-23 07:06:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 05:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表