找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cancer Prevention Through Early Detection; Second International Sharib Ali,Fons van der Sommen,Iris Kolenbrander Conference proceedings 202

[复制链接]
楼主: 浮浅
发表于 2025-3-26 22:43:45 | 显示全部楼层
https://doi.org/10.1007/978-3-031-45350-2medical image analysis; machine learning; deep learning; lesion classification; lesion detection; lesion
发表于 2025-3-27 04:48:26 | 显示全部楼层
发表于 2025-3-27 08:24:14 | 显示全部楼层
A Deep Attention-Multiple Instance Learning Framework to Predict Survival of Soft-Tissue Sarcoma frotted from the Deep Attention-MIL model are used to divide the patients into low/high-risk groups and predict survival time. The framework was trained and validated on a local dataset including 220 patients, then it was used to predict the survival for 48 patients in an external validation dataset. T
发表于 2025-3-27 10:37:09 | 显示全部楼层
发表于 2025-3-27 15:51:57 | 显示全部楼层
Fully Automated CAD System for Lung Cancer Detection and Classification Using 3D Residual U-Net withxtensive experimental results illustrate the effectiveness of our 3D residual U-Net model. These results demonstrate the exceptional detection performance achieved by our proposed model with a sensitivity of 97.65% and an average classification accuracy of 96.37%. Performance analysis demonstrates t
发表于 2025-3-27 18:39:37 | 显示全部楼层
发表于 2025-3-28 01:03:44 | 显示全部楼层
Multispectral 3D Masked Autoencoders for Anomaly Detection in Non-Contrast Enhanced Breast MRI-cancerous images are presented to the model, with the purpose of localizing anomalous tumor regions during test time. We use a public dataset for model development. Performance of the architecture is evaluated in reference to subtraction images created from DCE-MRI. Code has been made publicly avai
发表于 2025-3-28 02:36:08 | 显示全部楼层
发表于 2025-3-28 09:21:08 | 显示全部楼层
发表于 2025-3-28 11:01:54 | 显示全部楼层
ColNav: Real-Time Colon Navigation for Colonoscopyure, providing actionable and comprehensible guidance to un-surveyed areas in real-time, while seamlessly integrating into the physician’s workflow. Through coverage experimental evaluation, we demonstrated that our system resulted in a higher polyp recall (PR) and high inter-rater reliability with
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-18 03:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表