找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bioinformatics Research and Applications; 20th International S Wei Peng,Zhipeng Cai,Pavel Skums Conference proceedings 2024 The Editor(s) (

[复制链接]
查看: 45306|回复: 62
发表于 2025-3-21 18:02:10 | 显示全部楼层 |阅读模式
期刊全称Bioinformatics Research and Applications
期刊简称20th International S
影响因子2023Wei Peng,Zhipeng Cai,Pavel Skums
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Bioinformatics Research and Applications; 20th International S Wei Peng,Zhipeng Cai,Pavel Skums Conference proceedings 2024 The Editor(s) (
影响因子.This book constitutes the refereed proceedings of the 20th International Symposium on Bioinformatics Research and Applications, ISBRA 2024, held in Kunming, China, in July 19–21, 2024...The 93 full papers  included in this book were carefully reviewed and selected from 236 submissions. The symposium provides a forum for the exchange of ideas and results among researchers, developers, and practitioners working on all aspects of bioinformatics and computational biology and their applications..
Pindex Conference proceedings 2024
The information of publication is updating

书目名称Bioinformatics Research and Applications影响因子(影响力)




书目名称Bioinformatics Research and Applications影响因子(影响力)学科排名




书目名称Bioinformatics Research and Applications网络公开度




书目名称Bioinformatics Research and Applications网络公开度学科排名




书目名称Bioinformatics Research and Applications被引频次




书目名称Bioinformatics Research and Applications被引频次学科排名




书目名称Bioinformatics Research and Applications年度引用




书目名称Bioinformatics Research and Applications年度引用学科排名




书目名称Bioinformatics Research and Applications读者反馈




书目名称Bioinformatics Research and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:15:48 | 显示全部楼层
发表于 2025-3-22 04:07:01 | 显示全部楼层
发表于 2025-3-22 08:36:39 | 显示全部楼层
发表于 2025-3-22 09:19:45 | 显示全部楼层
Metallurgical Process Engineeringact and fuse key features. We validated the performance of the model on the publicly available dataset TCGA-COAD, and the experimental results demonstrated the superior ability of CovAttnNet in predicting the status of colon cancer MSI status. This study provides a new method for deep learning in marker prediction research.
发表于 2025-3-22 14:24:04 | 显示全部楼层
,Patch-Based Coupled Attention Network to Predict MSI Status in Colon Cancer,act and fuse key features. We validated the performance of the model on the publicly available dataset TCGA-COAD, and the experimental results demonstrated the superior ability of CovAttnNet in predicting the status of colon cancer MSI status. This study provides a new method for deep learning in marker prediction research.
发表于 2025-3-22 18:34:15 | 显示全部楼层
Die Theorie des Metallspritzens,ation module (LRM) for global and local features extraction, respectively, and then fuses global and local features for final classification. The experimental results show the effectiveness and potential of the proposed HM-HER2 model in the field of H &E-stained whole slide images (WSIs) classification of breast cancer.
发表于 2025-3-22 21:48:49 | 显示全部楼层
Metallurgical Design and Industryised deep neural network is trained with cross-entropy loss and a contrastive regularization term to predict the types of the remaining cells. During this process, the labels of some cells are corrected from one cell type to another, a phenomenon that can also be elucidated from various biological perspectives.
发表于 2025-3-23 02:43:48 | 显示全部楼层
https://doi.org/10.1007/978-3-642-13956-7ients and healthy controls. Our findings demonstrate higher classification accuracy using time-varying features compared to static brain network topology features. This study enhances our understanding of the dynamic brain network mechanisms in ASD and suggests reliable methods for early diagnosis.
发表于 2025-3-23 05:56:42 | 显示全部楼层
,A Hybrid Feature Fusion Network for Predicting HER2 Status on H &E-Stained Histopathology Images,ation module (LRM) for global and local features extraction, respectively, and then fuses global and local features for final classification. The experimental results show the effectiveness and potential of the proposed HM-HER2 model in the field of H &E-stained whole slide images (WSIs) classification of breast cancer.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 10:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表