找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bioinformatics Research and Applications; 20th International S Wei Peng,Zhipeng Cai,Pavel Skums Conference proceedings 2024 The Editor(s) (

[复制链接]
楼主: 使委屈
发表于 2025-3-26 21:46:27 | 显示全部楼层
Vorläufiges über den Metallischen Zustandtions of medium-resolution cryo-EM maps in the EMDB could benefit from potentially more reliable AlphaFold models derived later after more structural templates become available in the PDB. To study the utility of AlphaFold-predicted models, we conducted systematic mapping between the PDB and AlphaFo
发表于 2025-3-27 01:44:20 | 显示全部楼层
发表于 2025-3-27 09:02:37 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-3275-3ffold to maximize the number of increased duo-preservations between the filled scaffold and the reference genome. In [.], this problem was shown to be MAX-SNP-complete and can not be approximated within .. In this paper, we firstly improve the inapproximability gap to ., then we devise a new approxi
发表于 2025-3-27 12:17:49 | 显示全部楼层
发表于 2025-3-27 16:47:01 | 显示全部楼层
发表于 2025-3-27 18:00:23 | 显示全部楼层
发表于 2025-3-28 01:57:07 | 显示全部楼层
Schallschwingungen in Metallen,modules, our extensive experiments show that the Euclidean distances between learned features are highly related with the mutual exclusivity defined on the original data, and they can reveal more information compared to mutual exclusivity. Thus, we apply the Euclidean distances of learned gene featu
发表于 2025-3-28 03:49:44 | 显示全部楼层
发表于 2025-3-28 09:44:10 | 显示全部楼层
,LoopNetica: Predicting Chromatin Loops Using Convolutional Neural Networks and Attention Mechanismstic data, which are not always available. To overcome this problem, we propose a new deep learning computational tool called LoopNetica by utilizing a combination of one-dimensional convolutional neural networks and a multi-head attention mechanism. It can accurately predict the formation of chromat
发表于 2025-3-28 12:53:43 | 显示全部楼层
,Probabilistic and Machine Learning Models for the Protein Scaffold Gap Filling Problem,stic algorithm to predict the missing amino acids in the gaps. The experimental results on both real and simulation data show that our proposed algorithms show promising results of 100% and close to 100% accuracy.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 04:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表