找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Building Responsible AI Algorithms; A Framework for Tran Toju Duke Book 2023 Toju Duke 2023 Responsible AI.Fairness Metrics.Data Quality.Tr

[复制链接]
楼主: 不友善
发表于 2025-3-25 04:47:43 | 显示全部楼层
DataAfter setting up and understanding the AI principles, the next foundational element and part of responsible AI development is looking at the data and its guiding principles.
发表于 2025-3-25 07:44:31 | 显示全部楼层
发表于 2025-3-25 14:49:58 | 显示全部楼层
SafetyThe previous chapter looked at fairness and explained how it relates to responsible AI. This chapter looks at AI safety and explains how it contributes to a responsible AI framework.
发表于 2025-3-25 17:55:44 | 显示全部楼层
ExplainabilityWhile the previous chapter covered Human-in-the-Loop and its importance in building responsible AI algorithms, it’s paramount to ensure the transparency and explainability of ML models following HITL processes. This chapter reviews “explainability,” also known as XAI and its implementation.
发表于 2025-3-25 20:59:59 | 显示全部楼层
RobustnessIn addition to ensuring that ML models and applications are respectful and cognizant of people’s privacy, and that they don’t infringe on human rights by violating privacy laws, it’s also important that AI technologies be protected from cyberattacks. This involves building robust ML models, which is another fundamental part of responsible AI.
发表于 2025-3-26 00:59:22 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-9306-5Responsible AI; Fairness Metrics; Data Quality; Transparent AI Models; Explainability; Responsible AI Fra
发表于 2025-3-26 06:11:17 | 显示全部楼层
发表于 2025-3-26 12:27:50 | 显示全部楼层
发表于 2025-3-26 13:20:11 | 显示全部楼层
发表于 2025-3-26 19:40:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 12:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表