找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Branching Processes; Proceedings of the F C. C. Heyde Conference proceedings 1995 Springer-Verlag New York, Inc. 1995 Branching process.Bro

[复制链接]
楼主: 不足木
发表于 2025-3-28 15:26:22 | 显示全部楼层
https://doi.org/10.1007/978-94-009-0057-8. is an asymptotic quasilikelihood estimator (AQL) of θ. Various extensions are considered: controlled branching in random environments, non i.i.d. (α.) and the case ., for which . is a consistent and an AQL estimator for θ.
发表于 2025-3-28 19:03:09 | 显示全部楼层
7.2.1.5.1 General introduction,coresponding processes stopped at zero are studied in the critical case and the asymptotic behaviour of the non-extinction probability is obtained (depending on the range of an extra critical parameter).
发表于 2025-3-28 23:38:17 | 显示全部楼层
7.2.1.5.1 General introduction,as a two-type decomposable branching process with time-dependent immigration. Some limit theorems are proved for the number of particles, when reproduction processes are critical and intensities of the number of “immigrants” are decreasing.
发表于 2025-3-29 05:13:27 | 显示全部楼层
发表于 2025-3-29 08:37:46 | 显示全部楼层
Supercritical Branching Processes: A Unified Approachmodels considered include the Galton-Watson and the general age-dependent both in the simple and multitype case as well as in the varying and random environment settings. A martingale derived from a weakly convergent subsequence is essential in the proofs.
发表于 2025-3-29 15:06:47 | 显示全部楼层
On the Statistics of Controlled Branching Processes. is an asymptotic quasilikelihood estimator (AQL) of θ. Various extensions are considered: controlled branching in random environments, non i.i.d. (α.) and the case ., for which . is a consistent and an AQL estimator for θ.
发表于 2025-3-29 16:39:14 | 显示全部楼层
Critical Branching Processes with Random Migrationcoresponding processes stopped at zero are studied in the critical case and the asymptotic behaviour of the non-extinction probability is obtained (depending on the range of an extra critical parameter).
发表于 2025-3-29 23:30:44 | 显示全部楼层
发表于 2025-3-30 02:12:43 | 显示全部楼层
发表于 2025-3-30 06:14:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 22:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表