找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Brain-Computer Interfaces; Revolutionizing Huma Bernhard Graimann,Gert Pfurtscheller,Brendan Allis Book 2010 Springer-Verlag GmbH Germany,

[复制链接]
查看: 8698|回复: 61
发表于 2025-3-21 17:00:25 | 显示全部楼层 |阅读模式
期刊全称Brain-Computer Interfaces
期刊简称Revolutionizing Huma
影响因子2023Bernhard Graimann,Gert Pfurtscheller,Brendan Allis
视频video
发行地址Gives detailed insight into a revolutionary new technology.Accessible treatment of a vital and highly interdisciplinary endeavour.Ideal overview for newcomers to the field.Includes supplementary mater
学科分类The Frontiers Collection
图书封面Titlebook: Brain-Computer Interfaces; Revolutionizing Huma Bernhard Graimann,Gert Pfurtscheller,Brendan Allis Book 2010 Springer-Verlag GmbH Germany,
影响因子.A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour..
Pindex Book 2010
The information of publication is updating

书目名称Brain-Computer Interfaces影响因子(影响力)




书目名称Brain-Computer Interfaces影响因子(影响力)学科排名




书目名称Brain-Computer Interfaces网络公开度




书目名称Brain-Computer Interfaces网络公开度学科排名




书目名称Brain-Computer Interfaces被引频次




书目名称Brain-Computer Interfaces被引频次学科排名




书目名称Brain-Computer Interfaces年度引用




书目名称Brain-Computer Interfaces年度引用学科排名




书目名称Brain-Computer Interfaces读者反馈




书目名称Brain-Computer Interfaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:10:36 | 显示全部楼层
,Brain Signals for Brain–Computer Interfaces,principles, and outlines a set of brain signals appropriate for BCI use. Section 2 describes specific brain signals used in BCIs, their neurophysiological origins, and their current applications. Finally, Sect. 3 discusses issues critical for maximizing the effectiveness of BCIs.
发表于 2025-3-22 00:46:40 | 显示全部楼层
Dynamics of Sensorimotor Oscillations in a Motor Task,re, many people can use BCI systems by imagining movements to convey information. The EEG has many regular rhythms. The most famous are the occipital alpha rhythm and the central mu and beta rhythms. People can desynchronize the alpha rhythm (that is, produce weaker alpha activity) by being alert, a
发表于 2025-3-22 08:10:04 | 显示全部楼层
Neurofeedback Training for BCI Control,or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neu
发表于 2025-3-22 09:41:58 | 显示全部楼层
The Graz Brain-Computer Interface,[36, 38] of single-trial electroencephalographic (EEG) data during actual (overt) and imagined (covert) hand movement [9, 18, 40]. At the beginning of our BCI research activities we had a cooperation with the Wadsworth Center in Albany, New York State, USA, with the common interest to control one-di
发表于 2025-3-22 16:30:18 | 显示全部楼层
BCIs in the Laboratory and at Home: The Wadsworth Research Program, and control. Numerous studies over the past two decades have indicated that scalp-recorded electroencephalographic (EEG) activity can be the basis for non-muscular communication and control systems, commonly called brain–computer interfaces (BCIs) [55]. EEG-based BCI systems measure specific featur
发表于 2025-3-22 19:02:26 | 显示全部楼层
,Detecting Mental States by Machine Learning Techniques: The Berlin Brain–Computer Interface,ized for revealing the user’s mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2–5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specif
发表于 2025-3-23 01:00:12 | 显示全部楼层
发表于 2025-3-23 03:41:27 | 显示全部楼层
发表于 2025-3-23 08:11:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 14:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表