找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1999 Springer Science+Business Media Dordrecht 1999 Boundary v

[复制链接]
楼主: GALL
发表于 2025-3-23 10:11:41 | 显示全部楼层
,Green’s Formulas and Theorems on Complete Collection of Isomorphisms for General Elliptic Boundary In the bounded domain . ⊂ .. with the boundary . ϵ .. we consider the elliptic boundary value problem
发表于 2025-3-23 16:22:53 | 显示全部楼层
Mathematics and Its Applicationshttp://image.papertrans.cn/b/image/190043.jpg
发表于 2025-3-23 18:59:59 | 显示全部楼层
https://doi.org/10.1007/978-94-015-9275-8Boundary value problem; Operator theory; distribution; functional analysis; partial differential equatio
发表于 2025-3-24 00:20:38 | 显示全部楼层
发表于 2025-3-24 05:50:02 | 显示全部楼层
发表于 2025-3-24 07:28:29 | 显示全部楼层
发表于 2025-3-24 11:01:19 | 显示全部楼层
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k̄) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ί = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k̄), and Γ. ∩ Γ. =Ø for .
发表于 2025-3-24 16:40:15 | 显示全部楼层
Roman Mikhailov,Inder Bir Singh Passithe exterior boundary of the domain . Denote by Γ. (j = 1, ..., k̄) the i.-dimensional manifold without boundary lying inside of Γ., 0≤ i. ≤ n — 1. Let ί = n - i. denotes the codimensionality of Γ.. Assume that Γ. ∈ C∞ (j = 0, ...,k̄), and Γ. ∩ Γ. =Ø for .
发表于 2025-3-24 21:05:24 | 显示全部楼层
https://doi.org/10.1007/978-3-540-85818-8ions (we mention here [Ler], [Går], [Vla], [Hör], the survey [VoG], and the bibliography given there). In this note the Cauchy problem for a system strictly hyperbolic in the Leray—Volevich sense is studied in the complete scale of spaces of Sobolev type depending on real parameters . and τ; . chara
发表于 2025-3-24 23:15:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 20:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表