找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Integral Equations on Contours with Peaks; Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S Book 2010 Birkhäuser Basel 2010 Dir

[复制链接]
楼主: oxidation
发表于 2025-3-23 11:22:04 | 显示全部楼层
发表于 2025-3-23 14:12:20 | 显示全部楼层
发表于 2025-3-23 20:39:44 | 显示全部楼层
发表于 2025-3-23 23:39:33 | 显示全部楼层
https://doi.org/10.1007/978-3-0346-0171-9Dirichlet problem; Integral equation; Neumann problem; boundary integral equation; elasticity theory
发表于 2025-3-24 04:52:30 | 显示全部楼层
Birkhäuser Basel 2010
发表于 2025-3-24 10:23:20 | 显示全部楼层
Boundary Integral Equations on Contours with Peaks978-3-0346-0171-9Series ISSN 0255-0156 Series E-ISSN 2296-4878
发表于 2025-3-24 12:36:59 | 显示全部楼层
发表于 2025-3-24 18:51:05 | 显示全部楼层
https://doi.org/10.1007/BFb0119075lem . and the Neumann problem . in a plane bounded simply connected domain Ω. with a peak at the boundary Γ. Here and elsewhere we assume the normal . to be outward. Another assumption is that the vertex of the peak is placed at the origin.
发表于 2025-3-24 19:16:49 | 显示全部楼层
,Boundary Integral Equations in Hölder Spaces on a Contour with Peak,lem . and the Neumann problem . in a plane bounded simply connected domain Ω. with a peak at the boundary Γ. Here and elsewhere we assume the normal . to be outward. Another assumption is that the vertex of the peak is placed at the origin.
发表于 2025-3-25 01:00:39 | 显示全部楼层
Asymptotic Formulae for Solutions of Boundary Integral Equations Near Peaks,form of double layer potentials . and single layer potentials . For the internal Dirichlet problem and for the external Neumann problem the densities of the corresponding potentials can be found from the boundary integral equations . where . is the value of the potential . at a boundary point, and .
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 09:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表