找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Integral Equations on Contours with Peaks; Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S Book 2010 Birkhäuser Basel 2010 Dir

[复制链接]
查看: 31721|回复: 35
发表于 2025-3-21 18:26:31 | 显示全部楼层 |阅读模式
期刊全称Boundary Integral Equations on Contours with Peaks
影响因子2023Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S
视频video
发行地址The only book dedicated to boundary integral equations for non-Lipschitz domains.New method, different from the traditional approach based on the theories of Fredholm and singular integral operators.D
学科分类Operator Theory: Advances and Applications
图书封面Titlebook: Boundary Integral Equations on Contours with Peaks;  Vladimir G. Maz’ya,Alexander A. Soloviev,Tatyana S Book 2010 Birkhäuser Basel 2010 Dir
Pindex Book 2010
The information of publication is updating

书目名称Boundary Integral Equations on Contours with Peaks影响因子(影响力)




书目名称Boundary Integral Equations on Contours with Peaks影响因子(影响力)学科排名




书目名称Boundary Integral Equations on Contours with Peaks网络公开度




书目名称Boundary Integral Equations on Contours with Peaks网络公开度学科排名




书目名称Boundary Integral Equations on Contours with Peaks被引频次




书目名称Boundary Integral Equations on Contours with Peaks被引频次学科排名




书目名称Boundary Integral Equations on Contours with Peaks年度引用




书目名称Boundary Integral Equations on Contours with Peaks年度引用学科排名




书目名称Boundary Integral Equations on Contours with Peaks读者反馈




书目名称Boundary Integral Equations on Contours with Peaks读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:13:57 | 显示全部楼层
发表于 2025-3-22 01:06:49 | 显示全部楼层
Asymptotic Formulae for Solutions of Boundary Integral Equations Near Peaks,of the corresponding potentials can be found from the boundary integral equations . where . is the value of the potential . at a boundary point, and . where . is the value of the normal derivative of the single layer potential
发表于 2025-3-22 06:31:52 | 显示全部楼层
https://doi.org/10.1007/BFb0119075ress tensor with components σ., σ. and τ., which are considered as functions of the complex variables .=. + . and .. Here . and . are Cartesian coordinates of the initial position of points of an elastic body, whose displacement is the vector .(., .).
发表于 2025-3-22 11:09:42 | 显示全部楼层
Integral Equations of Plane Elasticity in Domains with Peak,ress tensor with components σ., σ. and τ., which are considered as functions of the complex variables .=. + . and .. Here . and . are Cartesian coordinates of the initial position of points of an elastic body, whose displacement is the vector .(., .).
发表于 2025-3-22 16:16:20 | 显示全部楼层
发表于 2025-3-22 20:46:39 | 显示全部楼层
发表于 2025-3-22 22:22:51 | 显示全部楼层
发表于 2025-3-23 02:46:22 | 显示全部楼层
发表于 2025-3-23 09:34:37 | 显示全部楼层
https://doi.org/10.1007/BFb0119075ms for the Lamé system can be reduced to a system of integral equations for which one gets results similar to those given in the previous chapters. In order to describe the stress and strain state of a body in plane elasticity, one uses the displacement vector .(., .) = (.(., .), .(., .)) and the st
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 09:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表