找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Integral Equations; George C. Hsiao,Wolfgang L. Wendland Book 2021Latest edition Springer Nature Switzerland AG 2021 Fredholm alt

[复制链接]
楼主: 萌芽的心
发表于 2025-3-26 21:59:18 | 显示全部楼层
Applied Mathematical Scienceshttp://image.papertrans.cn/b/image/190016.jpg
发表于 2025-3-27 03:47:38 | 显示全部楼层
Boundary Integral Equations978-3-030-71127-6Series ISSN 0066-5452 Series E-ISSN 2196-968X
发表于 2025-3-27 08:40:52 | 显示全部楼层
Low Threshold Organic Semiconductor Laserssed on the direct approach. This reduction can be easily extended to more general partial differential equations. Here we will consider, in particular, the Helmholtz equation, the Lame system, the Stokes equations and the biharmonic equation.
发表于 2025-3-27 12:15:03 | 显示全部楼层
发表于 2025-3-27 15:27:46 | 显示全部楼层
Theory of Organic Semiconductor Lasers,differential equations. We collect some basic theorems in functional analysis which are needed for this purpose. In particular, Green‘s theorems and the Lax–Milgram theorem are fundamental tools for the solvability of boundary integral equations as well as for elliptic partial differential equations.
发表于 2025-3-27 20:05:21 | 显示全部楼层
Low Threshold Organic Semiconductor Lasersral operators including those presented in the previous chapters belong to the special class of classical pseudodifferential operators on compact manifolds. We are particularly interested in strongly elliptic systems of pseudodifferential operators providing Gårding‘s inequality, see Theorem 9.1.4.
发表于 2025-3-27 22:26:15 | 显示全部楼层
https://doi.org/10.1007/978-1-4419-9320-5In this chapter we present the two–dimensional theory of classical pseudodifferential and boundary integral operators based on Fourier analysis. In general, the representations of boundary potentials are based on the local charts and local coordinates (3.3.3)–(3.3.5).
发表于 2025-3-28 05:24:02 | 显示全部楼层
https://doi.org/10.1007/978-3-030-71127-6Fredholm alternative; Garding‘ s inequality; Green‘ s formulae; Integral equation; differential equation
发表于 2025-3-28 09:25:13 | 显示全部楼层
978-3-030-71129-0Springer Nature Switzerland AG 2021
发表于 2025-3-28 12:46:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 23:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表