用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Element Methods; Fundamentals and App S. Kobayashi,N. Nishimura Conference proceedings 1992 Springer-Verlag Berlin Heidelberg 1992

[复制链接]
楼主: 万能
发表于 2025-3-23 13:21:14 | 显示全部楼层
Dynamic Crack Contact Analysis by Boundary Integral Equation Method,uency and time domains have been published [1]. In an actual situation, however, crack faces may not always satisfy the assumption. Let us consider a fatigue crack as an example. Crack-opening displacements across a fatigue crack are very small in some case. There is a possibility of dynamic contact
发表于 2025-3-23 17:46:33 | 显示全部楼层
Current Status of the GENESIS Methodology for Knowledge-Based Treatment of Transonic Flows, with Emition V′. in an equivalent . (.) problem. This allows existing linear 3-D panel codes to be adapted to the solution of the compressible Euler equations over realistic configurations, without the need for a computational mesh in the external field. This paper gives an overview of the current status o
发表于 2025-3-23 20:45:02 | 显示全部楼层
发表于 2025-3-23 22:27:42 | 显示全部楼层
A Time-Stepping Boundary Element Method Applied to Transient Thermoelasticity,onduction states. The time derivative in the resulting differential equations is approximated by the time-stepping scheme. The reduced differential equations are transformed into a set of boundary integral equations by using the exact fundamental solutions which can be derived by. the Hörmander meth
发表于 2025-3-24 04:09:29 | 显示全部楼层
发表于 2025-3-24 08:11:10 | 显示全部楼层
发表于 2025-3-24 10:51:02 | 显示全部楼层
发表于 2025-3-24 16:32:39 | 显示全部楼层
The Completed Double Layer BIEM: A Boundary Integral Method for Complex Microstructures in a Viscouion of Lorentz (which follows from a Green’s identity) the integral representation employed here consists of an aphysical dipole distribution, and a combination of point forces and torques. The existence of this class of representations follows from the Fredholm-Riesz-Schauder theory. In the problem
发表于 2025-3-24 20:59:21 | 显示全部楼层
发表于 2025-3-25 00:57:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-26 10:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表