期刊全称 | Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors | 影响因子2023 | Jan H. Bruinier | 视频video | | 发行地址 | Includes supplementary material: | 学科分类 | Lecture Notes in Mathematics | 图书封面 |  | 影响因子 | Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds‘ construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved. | Pindex | Book 2002 |
The information of publication is updating
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors影响因子(影响力) 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors影响因子(影响力)学科排名 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors网络公开度 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors网络公开度学科排名 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors被引频次 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors被引频次学科排名 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors年度引用 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors年度引用学科排名 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors读者反馈 
书目名称Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors读者反馈学科排名 
|
|
|