找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Biorthogonal Systems in Banach Spaces; Petr Hájek,Vicente Montesinos Santalucía,Václav Zi Textbook 2008 Springer-Verlag New York 2008 Bana

[复制链接]
楼主: relapse
发表于 2025-3-25 06:58:38 | 显示全部楼层
发表于 2025-3-25 11:11:31 | 显示全部楼层
https://doi.org/10.1007/978-0-387-68915-9Banach Space; banach spaces; functional analysis
发表于 2025-3-25 12:18:35 | 显示全部楼层
发表于 2025-3-25 19:27:36 | 显示全部楼层
发表于 2025-3-25 23:04:30 | 显示全部楼层
CMS Books in Mathematicshttp://image.papertrans.cn/b/image/188521.jpg
发表于 2025-3-26 04:08:50 | 显示全部楼层
https://doi.org/10.1007/978-3-658-13124-1ble setting, related to this structure. When searching for a system of coordinates to represent any vector of a (separable) Banach space, a natural approach is to consider the concept of a Schauder basis. Unfortunately, not every separable Banach space has such a basis, as was proved by Enflo in [En
发表于 2025-3-26 07:01:58 | 显示全部楼层
发表于 2025-3-26 09:10:42 | 显示全部楼层
https://doi.org/10.1007/978-3-658-13124-1es on some fundamental results concerning Mackey and weak topologies. For example, the first section presents some of Grothendieck’s basic results on the dual Mackey topology on dual Banach spaces. The second section includes work of Odell, Rosenthal, Emmanuele, Valdivia, and others on the sequentia
发表于 2025-3-26 16:26:36 | 显示全部楼层
Bank- und Kundenloyalität im Wandelon of long Schauder bases; the first section introduces this notion, which is a natural generalization of the usual Schauder basis. The first section also contains Plichko’s improvement of the natural “exhaustion” argument that yields the existence of a bounded total biorthogonal system in every Ban
发表于 2025-3-26 18:12:20 | 显示全部楼层
Exkurs: Die Erfolgsgeschichte von PING AN identity, the separable complementation property, and projectional generators. Renorming theory also plays an important role here, as spaces with an M-basis admit an equivalent rotund norm, while spaces with a strong M-basis even have an LUR renorming thanks to the fundamental result of Troyanski..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 00:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表