找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Biology and Biotechnology of the Plant Hormone Ethylene; A. K. Kanellis,C. Chang,D. Grierson Book 1997 Springer Science+Business Media Dor

[复制链接]
楼主: 到来
发表于 2025-3-28 17:36:50 | 显示全部楼层
发表于 2025-3-28 22:31:11 | 显示全部楼层
Regulation of Auxin-Induced Ethylene Biosynthesis in Etiolated Pea Stemsation of ethylene biosynthesis, pea seedlings exhibit a number of well-described growth responses mediated, at least in part, by ethylene. This chapter will discuss some of these responses, attempting to integrate earlier observations with more recent information provided by mutants and molecular an
发表于 2025-3-29 01:29:20 | 显示全部楼层
The Role of Jasmonates in Ethylene Biosynthesises, elicitors and signal transducers [19, 23, 41, 54]. Biosynthesis of (+)-7-iso-jasmonic acid [syn. (+)-2-epi-jasmonic acid)] originates from linolenic acid and is easily transformed to (-)-jasmonic acid (Fig. 1). All of different plant responses to jasmonates, wheather applied externally or releas
发表于 2025-3-29 03:30:06 | 显示全部楼层
Two-Component Regulators and Ethylene Signal Transduction in ,ronmental signals [1]. Signal transduction by these regulators leads to numerous adaptive responses such as chemotaxis, phosphate regulation, nitrate regulation, host recognition for pathogen invasion, osmoregulation and stress-induced sporulation. Although two-component regulators are well-characte
发表于 2025-3-29 08:18:12 | 显示全部楼层
The Ethylene Binding Site of the ETR1 Proteinied ethylene alter plant development, and because endogenously produced ethylene induces these changes in ways that make biological sense to the observer. There is also some basis for considering that ethylene perception conforms to the classic receptor occupancy theory described by Michaelis-Menton
发表于 2025-3-29 12:59:06 | 显示全部楼层
The Ethylene Receptor Gene Family in ,unicellular organism for its survival in variable conditions. It is equally critical to a multicellular organism for its adaptation, as well as its coordinated development. In plants, some growth regulators have long been shown to act as signals to cany out this process. However, until recently litt
发表于 2025-3-29 18:57:04 | 显示全部楼层
Ethylene Signal Perception and Transduction. Virtually all higher plants investigated contain at least two classes of ethylene-binding site; one of which fully associates and dissociates in about 2 h and a class of sites that takes up to 20 h to become fully saturated and 13 h for half dissociation to occur. Although there appears to be two
发表于 2025-3-29 23:00:58 | 显示全部楼层
发表于 2025-3-30 03:03:01 | 显示全部楼层
发表于 2025-3-30 04:22:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-16 12:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表