找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Biological and Artificial Intelligence Environments; Bruno Apolloni,Maria Marinaro,Roberto Tagliaferri Conference proceedings 2005 Springe

[复制链接]
查看: 27884|回复: 63
发表于 2025-3-21 17:09:16 | 显示全部楼层 |阅读模式
期刊全称Biological and Artificial Intelligence Environments
影响因子2023Bruno Apolloni,Maria Marinaro,Roberto Tagliaferri
视频video
发行地址A fresh look on the state of the art of the research in Neural networks and related fields on the part of the computational intelligence.A special flavoured perspective of the above research from a 15
图书封面Titlebook: Biological and Artificial Intelligence Environments;  Bruno Apolloni,Maria Marinaro,Roberto Tagliaferri Conference proceedings 2005 Springe
Pindex Conference proceedings 2005
The information of publication is updating

书目名称Biological and Artificial Intelligence Environments影响因子(影响力)




书目名称Biological and Artificial Intelligence Environments影响因子(影响力)学科排名




书目名称Biological and Artificial Intelligence Environments网络公开度




书目名称Biological and Artificial Intelligence Environments网络公开度学科排名




书目名称Biological and Artificial Intelligence Environments被引频次




书目名称Biological and Artificial Intelligence Environments被引频次学科排名




书目名称Biological and Artificial Intelligence Environments年度引用




书目名称Biological and Artificial Intelligence Environments年度引用学科排名




书目名称Biological and Artificial Intelligence Environments读者反馈




书目名称Biological and Artificial Intelligence Environments读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:18:27 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-6191-3f diseases. We describe the workflow of a proteomic experiment for early detection of cancer which combines MS and DM, giving details of sample treatment and preparation, MS data generation, MS data preprocessing, data clustering and classification.
发表于 2025-3-22 04:13:28 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-6191-3the data by randomly sampling subsets of features and improving accuracy by aggregating the resulting base classifiers. In this paper we experiment the combination of random subspace with feature selection methods, showing preliminary experimental results that seem to confirm the effectiveness of the proposed approach.
发表于 2025-3-22 08:16:42 | 显示全部楼层
发表于 2025-3-22 08:53:10 | 显示全部楼层
发表于 2025-3-22 14:17:03 | 显示全部楼层
P. Kitslaar,M. Lemson,C. Schreurs,H. Bergs traditional MLP. Test error below 25% is archived by all architectures in two different simulation strategies. EαNet performance are 1 to 2%better on test error with respect to the other two architectures using the smaller network topology. The design of a digital implementation of the proposed neural network is also outlined.
发表于 2025-3-22 20:16:41 | 显示全部楼层
Progengrid: A Grid Framework for Bioinformaticsion to simplify interaction between bioinformatics tools and biological databases. This paper presents ProGenGrid (Proteomics & Genomics Grid), a distributed and ubiquitous grid environment, accessible through the web, for supporting “.” experiments in bioinformatics.
发表于 2025-3-22 22:07:56 | 显示全部楼层
Mass Spectrometry Data Analysis for Early Detection of Inherited Breast Cancerf diseases. We describe the workflow of a proteomic experiment for early detection of cancer which combines MS and DM, giving details of sample treatment and preparation, MS data generation, MS data preprocessing, data clustering and classification.
发表于 2025-3-23 05:19:38 | 显示全部楼层
Feature Selection Combined with Random Subspace Ensemble for Gene Expression Based Diagnosis of Malithe data by randomly sampling subsets of features and improving accuracy by aggregating the resulting base classifiers. In this paper we experiment the combination of random subspace with feature selection methods, showing preliminary experimental results that seem to confirm the effectiveness of the proposed approach.
发表于 2025-3-23 08:05:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 07:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表