找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete; Proceedings of the N Ludwig Faddeev,Pierre Van Moerbeke,Fra

[复制链接]
楼主: bradycardia
发表于 2025-3-28 15:28:26 | 显示全部楼层
发表于 2025-3-28 19:00:50 | 显示全部楼层
发表于 2025-3-28 23:58:07 | 显示全部楼层
The Rise and Fall of the Alliance,cted case is given through a quasiclassical tau-function, which satisfies the Hirota equations of the dispersionless Toda hierarchy, following from properties of the Dirichlet Green function.We also outline a possible generalization to the case of multiply connected domains related to the multi support solutions of matrix models.
发表于 2025-3-29 04:30:53 | 显示全部楼层
Deborah F. Shmueli,Rassem Khamaisied. A is the commutative algebra of functions generated by the unitary irreducible representations of the isometry group of the De Sitter .. Corresponding space-time carries the noncommutative geometry (NG) [1–14]. The Gauge invariance principle consistent with this NG is considered.
发表于 2025-3-29 10:20:00 | 显示全部楼层
QUANTUM INVARIANCE GROUPS OF PARTICLE ALGEBRAS,c inhomogenous orthogonal quantum group which is the inhomogenous quantum invariance group of the .-dimensional fermion algebra. Another is .(2., .), the bosonic inhomogenous symplectic quantum group which is the inhomogenous quantum invariance group of the .-dimensional boson algebra. Complexificat
发表于 2025-3-29 11:45:48 | 显示全部楼层
ALGEBRAIC HIROTA MAPS,ralized) Hirota derivatives in the limit of the dimension of the representation becoming infinite and we discuss an application to the theory of -functions associated with hyperelliptic curves of genus 2.
发表于 2025-3-29 18:36:23 | 显示全部楼层
HOMOCLINIC ORBITS AND DRESSING METHOD,yed to obtain homoclinic solutions for NLS with periodic boundaries. We propose a new method to analytically generate homo-clinic solutions for integrable nonlinear PDEs. This approach resembles the dressing method known in the theory of solitons. The pole positions in the dressing factor are given
发表于 2025-3-29 20:03:54 | 显示全部楼层
发表于 2025-3-30 00:53:51 | 显示全部楼层
发表于 2025-3-30 08:00:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 23:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表