找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems; Yaguo Lei,Naipeng Li,Xiang Li Book 2023 Xi‘an Jiaotong U

[复制链接]
查看: 16264|回复: 37
发表于 2025-3-21 18:30:51 | 显示全部楼层 |阅读模式
期刊全称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems
影响因子2023Yaguo Lei,Naipeng Li,Xiang Li
视频video
发行地址Provides basic theories and detailed background for fault diagnosis and prognosis.Covers state-of-the-art techniques and advancements in the field of intelligent fault diagnosis and RUL prediction.Pro
图书封面Titlebook: Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems;  Yaguo Lei,Naipeng Li,Xiang Li Book 2023 Xi‘an Jiaotong U
影响因子.This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era...Features:..Addresses the critical challenges in the field of PHM at present.Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis.Provides abundant experimental validations and engineering cases of the presented methodologies.
Pindex Book 2023
The information of publication is updating

书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems影响因子(影响力)




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems影响因子(影响力)学科排名




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems网络公开度




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems网络公开度学科排名




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems被引频次




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems被引频次学科排名




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems年度引用




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems年度引用学科排名




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems读者反馈




书目名称Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:19:47 | 显示全部楼层
Conventional Intelligent Fault Diagnosis, at present, the typical neural network models are briefly reviewed, as well as their applications in the fault diagnosis problems for mechanical systems. The radial basis function networks and the wavelet neural networks are included. Next, the statistical learning-based fault diagnosis methods are
发表于 2025-3-22 01:36:14 | 显示全部楼层
Hybrid Intelligent Fault Diagnosis,) combination method is introduced, where the same input feature set is considered. Next, a multiple adaptive neuro-fuzzy inference systems combination approaches with different input feature sets is demonstrated and validated using bearing fault diagnosis cases. Afterwards, a multidimensional hybri
发表于 2025-3-22 05:06:54 | 显示全部楼层
发表于 2025-3-22 09:21:12 | 显示全部楼层
发表于 2025-3-22 15:44:15 | 显示全部楼层
发表于 2025-3-22 21:00:26 | 显示全部楼层
https://doi.org/10.1007/978-981-16-9131-7Intelligent fault diagnosis; Remaining useful life; Rotating machinery; Industrial big data; Deep learni
发表于 2025-3-22 23:28:45 | 显示全部楼层
发表于 2025-3-23 04:59:20 | 显示全部楼层
发表于 2025-3-23 08:45:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 23:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表