找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data and Artificial Intelligence; 11th International C Vikram Goyal,Naveen Kumar,Dhruv Kumar Conference proceedings 2023 The Editor(s)

[复制链接]
楼主: 游牧
发表于 2025-3-28 17:24:05 | 显示全部楼层
发表于 2025-3-28 20:06:18 | 显示全部楼层
KG-CTG: Citation Generation Through Knowledge Graph-Guided Large Language Modelsset of standard S2ORC dataset, which only consists of computer science academic research papers in the English Language. Vicuna performs best for this task with 14.15 Meteor, 12.88 Rouge-1, 1.52 Rouge-2, and 10.94 Rouge-L. Also, Alpaca performs best, and improves the performance by 36.98% in Rouge-1
发表于 2025-3-28 23:49:41 | 显示全部楼层
SciPhyRAG - Retrieval Augmentation to Improve LLMs on Physics Q &Ae and . increase on ROUGE-2 scores. This approach has the potential to be used to reshape Physics Q &A by LLMs and has a lasting impact on their use for Physics education. Furthermore, the data sets released can be a reference point for future research and educational domain tasks such as . and ..
发表于 2025-3-29 04:17:20 | 显示全部楼层
发表于 2025-3-29 10:02:48 | 显示全部楼层
GEC-DCL: Grammatical Error Correction Model with Dynamic Context Learning for Paragraphs and Scholar we substantiate the efficacy of our approach, achieving substantial F. score enhancements: 77% increase, 19.61% boost, and 10.49% rise respectively, compared to state-of-the-art models. Furthermore, we contrast our model’s performance with LLaMA’s GEC capabilities. We extend our investigation to sc
发表于 2025-3-29 12:02:37 | 显示全部楼层
A Deep Learning Emotion Classification Framework for Low Resource Languageslassification model is selected through experimentation that compares machine learning models and pre-trained models. Machine learning and deep learning models are SVM, Logistic Regression, Random Forest, CNN, BiLSTM, and CNN+BiLSTM. The pre-trained models, mBERT, IndicBERT, and a hybrid model, mBER
发表于 2025-3-29 17:32:05 | 显示全部楼层
发表于 2025-3-29 21:31:51 | 显示全部楼层
发表于 2025-3-30 01:30:45 | 显示全部楼层
发表于 2025-3-30 04:32:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 15:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表