找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data Analytics for Smart Transport and Healthcare Systems; Saeid Pourroostaei Ardakani,Ali Cheshmehzangi Book 2023 The Editor(s) (if a

[复制链接]
楼主: 法官所用
发表于 2025-3-23 11:20:34 | 显示全部楼层
发表于 2025-3-23 17:24:08 | 显示全部楼层
Introducing the Google Tools Suite, to be more accurate by using feature relevance to assist people in making real-time transportation decisions to improve mobility and reduce accidents. The findings help improve urban transportation network and systems at multiple spatial levels.
发表于 2025-3-23 21:16:43 | 显示全部楼层
发表于 2025-3-23 23:49:04 | 显示全部楼层
A Predictive Data Analysis for Traffic Accidents: Real-Time Data Use for Mobility Improvement and Ac to be more accurate by using feature relevance to assist people in making real-time transportation decisions to improve mobility and reduce accidents. The findings help improve urban transportation network and systems at multiple spatial levels.
发表于 2025-3-24 06:18:06 | 显示全部楼层
Healthcare Infrastructure Development and Pandemic Prevention: An Optimal Model for Healthcare Inveshts how big data could be used to improve the availability and development of urban critical infrastructures, such as healthcare infrastructure. An optimal model is suggested as part of the conclusion of this study.
发表于 2025-3-24 08:52:01 | 显示全部楼层
发表于 2025-3-24 12:30:20 | 显示全部楼层
Robert Fantina,Andriy Storozhuk,Kamal Goyalynomial regression models to predict the delay time of a flight. The data analysis algorithm runs on a well-known dataset, which comprises flight data from more than ten US airlines from 2009 to 2019. The result indicates that 97.04. of the predicted result has a difference of fewer than 15 min between the actual value.
发表于 2025-3-24 16:37:08 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-2992-6ese transitions happening at a gradual pace. Thus, we believe these two sectors are leading the Big Data analytics research and practice, particularly in the context of smartness and smart city development. The chapter also summarises some of the key lessons from all case study chapters.
发表于 2025-3-24 21:45:02 | 显示全部楼层
发表于 2025-3-25 02:13:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 19:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表