找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bifurcation, Symmetry and Patterns; Jorge Buescu,Sofia B. S. D. Castro,Isabel Salgado Book 2003 Springer Basel AG 2003 Hot Spot.Mathemati

[复制链接]
楼主: hearing-aid
发表于 2025-3-28 15:42:30 | 显示全部楼层
H. Alfke,M. Kalinowski,H.-J. Wagnerattices. This is an equivariant bifurcation with spatial symmetry Γ = ..∔.⊕ℤ.. By extending the group to a larger, wreath product group we can use the method of . to find all solution branches guaranteed by group theory to be primary. This work is an extension of that done for the steady state FCC and BCC bifurcations in ..
发表于 2025-3-28 21:16:34 | 显示全部楼层
发表于 2025-3-29 02:57:18 | 显示全部楼层
https://doi.org/10.1007/978-3-642-58522-7on. This is because the Galilean symmetry leads to a large-scale neutral mode that interacts with the pattern. The resulting coupled amplitude equations, derived by considering the symmetry, show chaotic behaviour and exhibit a novel scaling in which the amplitude of the pattern is proportional to the 3/4 power of the bifurcation parameter.
发表于 2025-3-29 06:20:41 | 显示全部楼层
发表于 2025-3-29 10:56:21 | 显示全部楼层
发表于 2025-3-29 12:52:02 | 显示全部楼层
Per G. Lindgren,Anders HemmingssonIn this note we reveal some of the special structure of a year-class model. We formulate a certain parameter symmetry and compute the characteristic equation at the unique nontrivial equilibrium. In the case of equal sensitivity we derive phase-amplitude equations and show the existence of an invariant manifold.
发表于 2025-3-29 17:32:13 | 显示全部楼层
发表于 2025-3-29 23:27:37 | 显示全部楼层
Interventionelle kardiale ElektrophysiologieThis note is a summary of a talk given at the Conference on Symmetry and Bifurcation in honor of Marty Golubitsky and Ian Stewart. The results stated in this note are found, together with proofs, in the paper .
发表于 2025-3-30 03:53:33 | 显示全部楼层
Persistent Ergodicity and Stably Ergodic SRB Attractors in Equivariant DynamicsWe describe some recent analytic results on the co-existence of symmetry and chaotic dynamics in equivariant dynamics. We emphasize the case of skew-products and stably SRB attractors
发表于 2025-3-30 06:26:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 00:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表