找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Beyond Sobolev and Besov; Regularity of Soluti Cornelia Schneider Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusiv

[复制链接]
楼主: EXTRA
发表于 2025-3-25 06:25:42 | 显示全部楼层
Classification and use of symmetry dataIn the introduction we already sketched why we expect that the results proved in Chaps. .–. will have some impact concerning the theoretical foundation of adaptive algorithms. In this chapter, we want to return to these relationships in more detail.
发表于 2025-3-25 09:03:18 | 显示全部楼层
International Tax Enforcement in Canada,In this chapter we investigate traces of functions . on the boundary Γ of Lipschitz domains Ω.
发表于 2025-3-25 14:02:32 | 显示全部楼层
General Anti-avoidance Rules (GAAR),In this chapter we deal with traces of functions in generalized smoothness Morrey spaces on the boundary of .. domains Ω.
发表于 2025-3-25 19:01:08 | 显示全部楼层
发表于 2025-3-25 22:04:01 | 显示全部楼层
Regularity Theory for Parabolic PDEsThe present chapter is the heart of Part I of this manuscript dealing with the regularity theory of PDEs. In contrast to Chap. . we now consider parabolic problems and the (spacial) fractional Sobolev and Besov regularity of their solutions.
发表于 2025-3-26 00:08:28 | 显示全部楼层
Regularity Theory for Hyperbolic PDEsIn this chapter we study linear hyperbolic equations (6.1.1) of second order on special Lipschitz domains according to Definition .. For these kinds of equations regularity estimates in Kondratiev spaces were derived in which enable us to treat these equations in a similar way as the parabolic problems in Chap. ..
发表于 2025-3-26 08:02:28 | 显示全部楼层
发表于 2025-3-26 11:47:07 | 显示全部楼层
Traces on Lipschitz DomainsIn this chapter we investigate traces of functions . on the boundary Γ of Lipschitz domains Ω.
发表于 2025-3-26 16:18:20 | 显示全部楼层
Traces of Generalized Smoothness Morrey Spaces on DomainsIn this chapter we deal with traces of functions in generalized smoothness Morrey spaces on the boundary of .. domains Ω.
发表于 2025-3-26 20:17:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 20:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表