找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Best Approximation in Inner Product Spaces; Frank Deutsch Textbook 2001 Springer-Verlag New York 2001 Convexity.Hilbert space.algorithms.c

[复制链接]
楼主: 分类
发表于 2025-3-25 04:15:44 | 显示全部楼层
Bounded Linear Functionals and Best Approximation from Hyperplanes and Half-Spaces,sely those that “attain their norm” (Theorem 6.12). We should mention that many of the results of this chapter—particularly those up to Theorem 6.12—can be substantially simplified or omitted entirely if the space . is assumed ., i.e., if . is a Hilbert space. Because many of the important spaces th
发表于 2025-3-25 07:48:17 | 显示全部楼层
发表于 2025-3-25 13:35:25 | 显示全部楼层
发表于 2025-3-25 19:41:36 | 显示全部楼层
Best Approximation in Inner Product Spaces978-1-4684-9298-9Series ISSN 1613-5237 Series E-ISSN 2197-4152
发表于 2025-3-25 22:46:49 | 显示全部楼层
发表于 2025-3-26 04:03:07 | 显示全部楼层
发表于 2025-3-26 05:07:19 | 显示全部楼层
发表于 2025-3-26 09:56:54 | 显示全部楼层
Existence and Uniqueness of Best Approximations,ce theorems of interest. In particular, the two most useful existence and uniqueness theorems can be deduced from it. They are: (1) Every finite-dimensional subspace is Chebyshev, and (2) every closed convex subset of a Hilbert space is Chebyshev.
发表于 2025-3-26 12:58:34 | 显示全部楼层
发表于 2025-3-26 16:58:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-8 23:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表