找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Belief Functions: Theory and Applications; 6th International Co Thierry Denœux,Eric Lefèvre,Frédéric Pichon Conference proceedings 2021 Spr

[复制链接]
查看: 51788|回复: 35
发表于 2025-3-21 17:40:45 | 显示全部楼层 |阅读模式
期刊全称Belief Functions: Theory and Applications
期刊简称6th International Co
影响因子2023Thierry Denœux,Eric Lefèvre,Frédéric Pichon
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Belief Functions: Theory and Applications; 6th International Co Thierry Denœux,Eric Lefèvre,Frédéric Pichon Conference proceedings 2021 Spr
影响因子This book constitutes the refereed proceedings of the 6th International Conference on Belief Functions, BELIEF 2021, held in Shanghai, China, in October 2021. The 30 full papers presented in this book were carefully selected and reviewed from 37 submissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more.
Pindex Conference proceedings 2021
The information of publication is updating

书目名称Belief Functions: Theory and Applications影响因子(影响力)




书目名称Belief Functions: Theory and Applications影响因子(影响力)学科排名




书目名称Belief Functions: Theory and Applications网络公开度




书目名称Belief Functions: Theory and Applications网络公开度学科排名




书目名称Belief Functions: Theory and Applications被引频次




书目名称Belief Functions: Theory and Applications被引频次学科排名




书目名称Belief Functions: Theory and Applications年度引用




书目名称Belief Functions: Theory and Applications年度引用学科排名




书目名称Belief Functions: Theory and Applications读者反馈




书目名称Belief Functions: Theory and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:26:56 | 显示全部楼层
发表于 2025-3-22 03:40:05 | 显示全部楼层
https://doi.org/10.1007/978-1-349-86189-7a-cluster to the associated new classes using the .-Nearest neighbor technique. Two experiments show that CClu can handle imbalanced datasets with high accuracy, and the errors are reduced by properly modeling imprecision.
发表于 2025-3-22 06:05:17 | 显示全部楼层
发表于 2025-3-22 10:07:18 | 显示全部楼层
发表于 2025-3-22 12:53:16 | 显示全部楼层
发表于 2025-3-22 18:15:36 | 显示全部楼层
发表于 2025-3-23 00:24:43 | 显示全部楼层
Unequal Singleton Pair Distance for Evidential Preference Clusteringy and imprecision. However, traditional distances on belief functions do not adapt to some intrinsic properties of preference relations, especially when indifference relation is taken into comparison, therefore may cause inconsistent results in preference-based applications. In order to solve this i
发表于 2025-3-23 03:38:26 | 显示全部楼层
Transfer Evidential C-Means Clusteringa powerful clustering algorithm developed in the theoretical framework of belief functions. Based on the concept of credal partition, it extends those of hard, fuzzy, and possibilistic clustering algorithms. However, as a clustering algorithm, it can only work well when the data is sufficient and th
发表于 2025-3-23 09:14:28 | 显示全部楼层
https://doi.org/10.1007/978-3-030-88601-1artificial intelligence; combination rules; computer hardware; computer science; computer systems; comput
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 11:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表