找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Networks in Educational Assessment; Russell G. Almond,Robert J. Mislevy,David M. Willi Textbook 2015 Springer Science+Business Me

[复制链接]
楼主: exterminate
发表于 2025-3-26 22:17:32 | 显示全部楼层
发表于 2025-3-27 04:24:49 | 显示全部楼层
Explanation and Test Construction basis of those estimates. The quantity defined as the weight of evidence associated with a task is useful for explanation, as well as debugging models (explaining unexpected results). Expected weight of evidence is useful for assembling assessments either adaptively or in fixed forms.
发表于 2025-3-27 05:52:41 | 显示全部楼层
An Illustrative Examplehe network, learning the parameters of Bayes nets given a body of assessment data, and evaluating how well a proposed network fits the data. This chapter reviews these concepts in terms of an example: the mixed number subtraction example of Tatsuoka (1983).
发表于 2025-3-27 13:29:28 | 显示全部楼层
发表于 2025-3-27 13:42:48 | 显示全部楼层
The Biomass Measurement ModelFrom one perspective, evidence-centered assessment design and Bayesian networks are just notations. In particular, it is easy to express familiar assessment design patterns using these notations. Bayesian networks are just a way to parameterize multidimensional latent class models. What have we gained?
发表于 2025-3-27 21:06:28 | 显示全部楼层
发表于 2025-3-27 23:37:30 | 显示全部楼层
Mariusz Duplaga,Krzysztof Zielińskis used in discrete Bayes nets applications for assessment. It describes how, with the help of Bayes net software, to build and use Bayesian networks as the scoring engine for an assessment. It also illustrates some simple design patterns for building conditional probability tables.
发表于 2025-3-28 03:14:10 | 显示全部楼层
发表于 2025-3-28 07:55:20 | 显示全部楼层
Bidesh Chakraborty,Mamata Daluihe network, learning the parameters of Bayes nets given a body of assessment data, and evaluating how well a proposed network fits the data. This chapter reviews these concepts in terms of an example: the mixed number subtraction example of Tatsuoka (1983).
发表于 2025-3-28 12:06:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 09:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表