找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Learning for Neural Networks; Radford M. Neal Book 1996 Springer Science+Business Media New York 1996 Fitting.Likelihood.algorith

[复制链接]
楼主: PLY
发表于 2025-3-23 12:48:23 | 显示全部楼层
Priors for Infinite Networks,r hidden-to-output weights results in a Gaussian process prior for functions,which may be smooth, Brownian, or fractional Brownian. Quite different effects can be obtained using priors based on non-Gaussian stable distributions. In networks with more than one hidden layer, a combination of Gaussian and non-Gaussian priors appears most interesting.
发表于 2025-3-23 15:03:36 | 显示全部楼层
Monte Carlo Implementation,t hybrid Monte Carlo performs better than simple Metropolis,due to its avoidance of random walk behaviour. I also discuss variants of hybrid Monte Carlo in which dynamical computations are done using “partial gradients”, in which acceptance is based on a “window” of states,and in which momentum updates incorporate “persistence”.
发表于 2025-3-23 20:07:09 | 显示全部楼层
发表于 2025-3-23 22:17:09 | 显示全部楼层
发表于 2025-3-24 06:07:51 | 显示全部楼层
发表于 2025-3-24 08:04:25 | 显示全部楼层
Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/181856.jpg
发表于 2025-3-24 11:20:54 | 显示全部楼层
发表于 2025-3-24 18:35:09 | 显示全部楼层
发表于 2025-3-24 22:19:32 | 显示全部楼层
发表于 2025-3-25 03:06:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 12:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表