找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Inference of State Space Models; Kalman Filtering and Kostas Triantafyllopoulos Textbook 2021 The Editor(s) (if applicable) and Th

[复制链接]
楼主: 积聚
发表于 2025-3-26 21:32:26 | 显示全部楼层
发表于 2025-3-27 02:07:42 | 显示全部楼层
Springer Texts in Statisticshttp://image.papertrans.cn/b/image/181853.jpg
发表于 2025-3-27 06:09:28 | 显示全部楼层
Bayesian Inference of State Space Models978-3-030-76124-0Series ISSN 1431-875X Series E-ISSN 2197-4136
发表于 2025-3-27 12:52:33 | 显示全部楼层
State Space Models,Examples include linear trend and seasonal time series, time-varying regression, bearings-only tracking, financial time series and systems identification state space models. The chapter sets the stage for the book and provides a chapter-by-chapter description of the book. The chapter includes a brie
发表于 2025-3-27 14:28:27 | 显示全部楼层
Matrix Algebra, Probability and Statistics,d statistics. Because linear models in particular depend heavily on matrices, it deemed necessary to review some topics of matrix analysis, such as matrix differentiation. Rather than just stating results, which can be found in the literature, for pedagogical reasons we develop some of the arguments
发表于 2025-3-27 20:51:16 | 显示全部楼层
发表于 2025-3-27 23:10:23 | 显示全部楼层
发表于 2025-3-28 03:31:44 | 显示全部楼层
发表于 2025-3-28 09:38:16 | 显示全部楼层
Non-Linear and Non-Gaussian State Space Models,n-Gaussian and non-linear state space models. The text reviews some classes of the many possibilities of non-Gaussian models. In particular, dynamic generalised linear models (DGLM) are discussed aimed at categorical time series, count data, data for positive-valued time series, continuous proportio
发表于 2025-3-28 11:08:54 | 显示全部楼层
The State Space Model in Finance,he state space model can be used in this class of models. Stationarity has played an important role historically in economics and econometrics. Here we review the basic principles of stationarity and we provide an alternative proof for the stationarity conditions of autoregressive models of order th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 00:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表