找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bayesian Inference and Computation in Reliability and Survival Analysis; Yuhlong Lio,Ding-Geng Chen,Tzong-Ru Tsai Book 2022 The Editor(s)

[复制链接]
楼主: Alacrity
发表于 2025-3-23 11:00:24 | 显示全部楼层
Katrin Winkler,Nelly Heim,Tabea Heinzuch as the log-rank test and the Cox proportional hazards model assume non-informative censoring for time-to-event data, and mixed model analysis assumes missing-at-random (MAR) in longitudinal trials. Although such assumptions play a critical role in influencing the outcome of the analysis, there a
发表于 2025-3-23 16:45:49 | 显示全部楼层
发表于 2025-3-23 21:45:08 | 显示全部楼层
发表于 2025-3-23 23:31:26 | 显示全部楼层
发表于 2025-3-24 02:35:35 | 显示全部楼层
Jasmine Grabher,Madeleine Grawehrdata are very common in medical and epidemiological studies. In this chapter, we discuss a Bayesian approach for correlated interval-censored data under a dynamic Cox regression model. Some methods that incorporate right censoring have been developed for time-to-event data with temporal covariate ef
发表于 2025-3-24 08:23:35 | 显示全部楼层
Alexander Kuteynikov,Anatoly Boyashove considered a randomized clinical trial in which both longitudinal data and survival data were collected to compare the efficacy and the safety of two antiretroviral drugs in treating patients who had failed or were intolerant of zidovudine (AZT) therapy. Using these data, we demonstrated the advan
发表于 2025-3-24 14:05:02 | 显示全部楼层
Bayesian Computation in a Birnbaum–Saunders Reliability Model with Applications to Fatigue Data effect of two treatments and evaluate reliability. Bayesian computation is considered for inferring on the parameters of the Birnbaum–Saunders reliability model analyzed in this work. The methodology is applied to real fatigue data with the aid of the R software.
发表于 2025-3-24 15:33:48 | 显示全部楼层
发表于 2025-3-24 20:31:37 | 显示全部楼层
https://doi.org/10.1007/978-3-030-88658-5Bayes; Bayesian inference; statistical computing; reliability analysis; survival analysis
发表于 2025-3-25 02:53:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 20:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表