找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[复制链接]
楼主: Enclosure
发表于 2025-3-26 22:07:12 | 显示全部楼层
发表于 2025-3-27 03:24:10 | 显示全部楼层
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/181085.jpg
发表于 2025-3-27 06:07:07 | 显示全部楼层
Basic Number Theory.978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-27 13:17:15 | 显示全部楼层
0072-7830 Overview: 978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-27 15:21:09 | 显示全部楼层
Janusz Biene,Daniel Kaiser,Holger Marcks finite degree . over .. If . is an .-field and ., we must have .., .., . 2; then, by corollary 3 of prop. 4, Chap. III-3, ....(x) = x+x̄ and ....(x) . xx̄.... maps . onto ., and .... maps .. onto .., which is a subgroup of .. of index 2.
发表于 2025-3-27 20:17:46 | 显示全部楼层
List of Scientific and Common Names,morphic to the prime field ..=./.., with which we may identify it. Then . may be regarded as a vector-space over ..; as such, it has an obviously finite dimension ƒ, and the number of its elements is ... If . is a subfield of a field .; with ... elements, .; may also be regarded e.g. as a left vecto
发表于 2025-3-27 23:56:45 | 显示全部楼层
https://doi.org/10.1007/978-1-4939-0736-6an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I–2. By th. 3 of Chap. I–2, every subspace of such a space . is closed in .. Taking coordin
发表于 2025-3-28 02:38:35 | 显示全部楼层
Herrschaft - Staat - Mitbestimmunglgebraic number-fields by means of their embeddings into local fields. In the last century, however, it was discovered that the methods by which this can be done may be applied with very little change to certain fields of characteristic . >1; and the simultaneous study of these two types of fields t
发表于 2025-3-28 09:45:00 | 显示全部楼层
发表于 2025-3-28 10:51:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 12:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表