找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[复制链接]
楼主: Enclosure
发表于 2025-3-25 06:22:29 | 显示全部楼层
发表于 2025-3-25 07:36:11 | 显示全部楼层
The theorem of Riemann-Rocho algebraic geometry; this lies outside the scope of this book. The results to be given here should be regarded chiefly as an illustration for the methods developed above and as an introduction to a more general theory.
发表于 2025-3-25 15:29:15 | 显示全部楼层
Simple algebrashe same properties. Tensor-products will be understood to be taken over the groundfield ; thus we write .⊗. instead of .⊗.. when . are algebras over ., and .⊗. or .., instead of .⊗.., when . is an algebra over . and . a field containing .. being always considered as an algebra over ..
发表于 2025-3-25 18:50:39 | 显示全部楼层
发表于 2025-3-25 20:49:16 | 显示全部楼层
发表于 2025-3-26 02:04:34 | 显示全部楼层
发表于 2025-3-26 06:13:41 | 显示全部楼层
Simple algebras over A-fields; the algebra .(.) is uniquely determined up to an isomorphism, and .(.) and .(.) are uniquely determined. One says that . is . or . at . according as .. is trivial over .. or not, i. e. according as .(.) =1 or .(.)>1.
发表于 2025-3-26 09:19:23 | 显示全部楼层
Global classfield theory–1, for that of ?. into ?. We write .. for the group of characters of ?, or, what amounts to the same, of ?; for each . ∈ .., we write ..=.°.. this is a character of ?., or, what amounts to the same, of ?..
发表于 2025-3-26 15:10:53 | 显示全部楼层
Herrschaft - Staat - Mitbestimmungor all . not in . If . is also a finite set of places of ., and .., then ..(.) is contained in ..(.); moreover, its topology and its ring structure are those induced by those of ..(.) and ..(.) is an open subset of ..(.).
发表于 2025-3-26 20:04:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-12 12:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表