找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Basic Number Theory; André Weil Book 19671st edition Springer-Verlag Berlin Heidelberg 1967 Cantor.Mathematica.field.number theory

[复制链接]
楼主: Animosity
发表于 2025-3-26 22:44:21 | 显示全部楼层
0072-7830 Overview: 978-3-662-00046-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-27 02:19:02 | 显示全部楼层
发表于 2025-3-27 08:27:11 | 显示全部楼层
Takeshi Sairenji,Takeshi Kuratae .. for the maximal compact subring of .. and .. for the maximal ideal of .., these being the subsets of .. respectively defined by |.|.⩽1 and by |.|. < 1. We write . for the set of the infinite places of ., and . for any finite set of places of ., containing ..
发表于 2025-3-27 12:13:51 | 显示全部楼层
Ysolina Centifanto-Fitzgerald Ph.D. finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
发表于 2025-3-27 17:12:53 | 显示全部楼层
发表于 2025-3-27 18:21:16 | 显示全部楼层
Adelese .. for the maximal compact subring of .. and .. for the maximal ideal of .., these being the subsets of .. respectively defined by |.|.⩽1 and by |.|. < 1. We write . for the set of the infinite places of ., and . for any finite set of places of ., containing ..
发表于 2025-3-28 00:59:37 | 显示全部楼层
Traces and norms finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
发表于 2025-3-28 02:32:18 | 显示全部楼层
Sonja J. Olsen,Patrick S. MooreLet E be a vector-space of finite dimension over .. By a .-lattice in E, we understand a finitely generated subgroup of E which contains a basis of E over ..
发表于 2025-3-28 07:13:48 | 显示全部楼层
发表于 2025-3-28 12:20:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 12:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表