找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Basic Number Theory; André Weil Book 19671st edition Springer-Verlag Berlin Heidelberg 1967 Cantor.Mathematica.field.number theory

[复制链接]
楼主: Animosity
发表于 2025-3-25 06:42:25 | 显示全部楼层
Herpesviruses, the Immune System, and AIDS the infinite ones, singled out by intrinsic properties. It would be possible to develop an analogous theory for .-fields of characteristic .>1 by arbitrarily setting apart a finite number of places; this was the point of view adopted by Dedekind and Weber in the early stages of the theory. Whicheve
发表于 2025-3-25 09:03:52 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-1507-0 at .; if . is a finite place, .. is the maximal compact subring of .., and .. the maximal ideal in ... Moreover, in the latter case, we will agree once for all to denote by .. the module of the field .. and by .. a prime element of .., so that, by th. 6 of Chap. I–4, ../.. is a field with .. elemen
发表于 2025-3-25 15:39:44 | 显示全部楼层
Ysolina Centifanto-Fitzgerald Ph.D. finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
发表于 2025-3-25 18:00:58 | 显示全部楼层
发表于 2025-3-25 20:52:21 | 显示全部楼层
C. S. Foster,D. P. Dubey,S. Stux,E. Unisinite and > 0. If . and . are such spaces, we write Hom(., .) for the space of homomorphisms of . into ., and let it operate on the right on .; in other words, if . is such a homomorphism, and . ∈ ., we write . for the image of . under .. We consider Hom(., .), in an obvious manner, as a vector-spac
发表于 2025-3-26 03:11:26 | 显示全部楼层
发表于 2025-3-26 08:00:32 | 显示全部楼层
发表于 2025-3-26 09:16:35 | 显示全部楼层
发表于 2025-3-26 13:33:04 | 显示全部楼层
Springer-Verlag Berlin Heidelberg 1967
发表于 2025-3-26 18:09:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 05:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表