找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Basic ergodic theory; M. G. Nadkarni Book 2013Latest edition Hindustan Book Agency (India) 2013

[复制链接]
楼主: abandon
发表于 2025-3-28 17:28:54 | 显示全部楼层
发表于 2025-3-28 22:47:20 | 显示全部楼层
The Glimm-Effros Theorem, ., . = . only when . = . the identity of the group.) If . is a probability measure supported on an orbit of ., then clearly the .-action is ergodic with respect to .. Thus there always exists, in a trivial sense, a probability measure with respect to which the .-action is ergodic. But the . above i
发表于 2025-3-29 01:18:08 | 显示全部楼层
,E. Hopf’s Theorem,n of incompressibility was already formulated by E. Hopf ([5], 1932). We will combine a refined form of this notion with certain observations of V. V. Srivatsa to give a measure free proof of the pointwise ergodic theorem. Application of Ramsay-Mackey theorem and some classical measure theory then p
发表于 2025-3-29 06:38:10 | 显示全部楼层
,H. Dye’s Theorem,t equivalent, i.e., for there to exist a Borel isomorphism .: . → . such that for all ., .(orb (., .)) = orb (.(.), .). Let us observe that if . and . are orbit equivalent and if . has an orbit of length . then so has . and vice versa; moreover the cardinality of the set of orbits of length . for .
发表于 2025-3-29 11:08:11 | 显示全部楼层
9楼
发表于 2025-3-29 12:36:35 | 显示全部楼层
9楼
发表于 2025-3-29 18:31:22 | 显示全部楼层
10楼
发表于 2025-3-29 22:31:50 | 显示全部楼层
10楼
发表于 2025-3-30 03:43:17 | 显示全部楼层
10楼
发表于 2025-3-30 06:57:45 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-13 19:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表