找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bandit problems; Sequential Allocatio Donald A. Berry,Bert Fristedt Book 1985 D. A. Berry and B. Fristedt 1985 Calculation.Counting.Mathema

[复制链接]
楼主: 解毒药
发表于 2025-3-23 09:48:41 | 显示全部楼层
发表于 2025-3-23 15:52:42 | 显示全部楼层
发表于 2025-3-23 18:20:28 | 显示全部楼层
发表于 2025-3-24 00:21:45 | 显示全部楼层
发表于 2025-3-24 05:24:12 | 显示全部楼层
发表于 2025-3-24 07:06:24 | 显示全部楼层
Springers Handbücher der Rechtswissenschafts has been our convention in the Bernoulli case, we regard .. as a distribution on the Bernoulli parameter .. ∈ [0, 1] rather than on .. ∈ D; and consistent with an earlier modification of notation, we write the conditional distribution of (.., ..,...,..) given success on arm 1, say, as. and given a
发表于 2025-3-24 13:31:37 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-8265-9died in .., now abbreviated to ., the distribution of the random measure ... For arbitrary . we can, without loss, assume that arm 2 always produces the known observation . Since . is given by the pair (.), we now speak of the (., .; .)-bandit.
发表于 2025-3-24 17:08:52 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-8265-9en the problem is to maximize the sum of . observations. When . is unknown the corresponding random discount sequence can be taken to be nonrandom (see Section 3.1); it can be any nonincreasing sequence depending on the uncertainty in .. As a special case suppose . has a geometric distribution; so t
发表于 2025-3-24 21:13:59 | 显示全部楼层
Handbuch diagnostische Radiologience . has horizon n and is uniform: . . = ... = . . = 1 and . . = . . = ... = 0. Such uniform discounting has been considered extensively through examples in the first five chapters of this book, and in the literature generally. The objective implicit in uniform discounting is to maximize the expect
发表于 2025-3-24 23:23:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-2 09:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表