找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc

[复制链接]
楼主: burgeon
发表于 2025-3-28 16:46:54 | 显示全部楼层
发表于 2025-3-28 19:57:57 | 显示全部楼层
发表于 2025-3-28 23:54:12 | 显示全部楼层
发表于 2025-3-29 03:22:40 | 显示全部楼层
发表于 2025-3-29 11:04:45 | 显示全部楼层
发表于 2025-3-29 11:35:26 | 显示全部楼层
Cross-Modal Attention Alignment Network with Auxiliary Text Description for Zero-Shot Sketch-Based ILLM with several interrogative sentences, (ii) a Feature Extraction Module that includes two ViTs for sketch and image data, a transformer for extracting tokens of sentences of each training category, finally (iii) a Cross-modal Alignment Module that exchanges the token features of both text-sketch
发表于 2025-3-29 18:11:17 | 显示全部楼层
Exploring Interpretable Semantic Alignment for Multimodal Machine Translationalysis of the results demonstrates the effectiveness and interpretability of our model, which is highly competitive compared to the baseline. Further exploration of extractors in MMT shows that a large multimodal pre-trained model can provide more fine-grained semantic alignment, thus giving it an a
发表于 2025-3-29 22:35:09 | 显示全部楼层
Modal Fusion-Enhanced Two-Stream Hashing Network for Cross Modal Retrievalon matrices between modalities. Subsequently, by adjusting the similarity weights of the fusion matrix between modalities, we shorten the distances between the most similar instance pairs and increase the distances between the most dissimilar instance pairs, thereby generating hash codes with higher
发表于 2025-3-30 01:26:51 | 显示全部楼层
Text Visual Question Answering Based on Interactive Learning and Relationship Modeling (RPRET) layer is introduced to model the relative position relationship between different modalities in the image, thereby improving the performance of answering the question related to spatial position relationships. The proposed method outperforms various state-of-the-art models on two public dat
发表于 2025-3-30 05:47:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 03:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表