找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc

[复制链接]
楼主: invigorating
发表于 2025-3-23 13:39:39 | 显示全部楼层
Key Substructure-Driven Backdoor Attacks on Graph Neural Networkscker-chosen target class key substructures, modifying few critical edges and nodes. Our approach across real datasets spanning diverse domains highlights its efficiency. The proposed methodology establishes a pioneering direction for refining backdoor attack techniques on GNNs.
发表于 2025-3-23 15:22:10 | 显示全部楼层
Missing Data Imputation via Neighbor Data Feature-Enriched Neural Ordinary Differential Equationsetwork is then employed to learn adjacent information of neighboring variables. The temporal information is captured by applying a gate recurrent unit module, thereby obtaining a spatiotemporal prior. The decoder introduces an ordinary differential equation module to generate a series of continuous
发表于 2025-3-23 19:05:28 | 显示全部楼层
发表于 2025-3-24 00:37:08 | 显示全部楼层
STGNA: Spatial-Temporal Graph Convolutional Networks with Node Level Attention for Shortwave Communiatial-temporal patterns of shortwave communications parameters, yielding to enhanced forecasting accuracy. Comprehensive experiments on a targeted dataset demonstrate that our approach significantly outperforms other baselines in forecasting accuracy.
发表于 2025-3-24 05:37:45 | 显示全部楼层
Virtual Nodes based Heterogeneous Graph Convolutional Neural Network for Efficient Long-Range Informormation aggregation with only 4 layers. Additionally, we demonstrate that VN-HGCN can serve as a versatile framework that can be seamlessly applied to other HGNN models, showcasing its generalizability. Empirical evaluations validate the effectiveness of VN-HGCN, and extensive experiments conducted
发表于 2025-3-24 08:20:32 | 显示全部楼层
发表于 2025-3-24 12:56:07 | 显示全部楼层
An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration of the reasoning results. Experimental results show that our scheme significantly progressed across multiple datasets, notably achieving an improvement of over 10% on the QALD10 dataset compared to both the best baseline and the fine-tuned state-of-the-art (SOTA) models.
发表于 2025-3-24 17:42:30 | 显示全部楼层
发表于 2025-3-24 22:39:48 | 显示全部楼层
发表于 2025-3-25 02:50:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 12:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表