找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Intelligent Computing Technology and Applications; 20th International C De-Shuang Huang,Yijie Pan,Jiayang Guo Conference proceedin

[复制链接]
楼主: Filament
发表于 2025-3-28 15:23:10 | 显示全部楼层
发表于 2025-3-28 20:33:57 | 显示全部楼层
Mechatronische Fahrwerkregelung,roposed modules, including Gaussian Noise Mix (GNM), Resblock, and Local Features Interpolation (LFI), use GSNet as the baseline. GNM is used for feature augmentation of backbone features during training to reduce the empirical risk of the model when dealing with novel samples. Resblock is designed
发表于 2025-3-29 00:07:42 | 显示全部楼层
https://doi.org/10.1007/978-3-8348-9573-8, the pixel resolution of images captured by traffic cameras is generally low, and there is a significant difference between the data collected during daytime and nighttime. Existing object detection algorithms don’t perform admirably on low-resolution images. To overcome these challenges, we presen
发表于 2025-3-29 04:39:14 | 显示全部楼层
发表于 2025-3-29 10:05:44 | 显示全部楼层
Konzepte und Kennfelder von Antrieben the single gait forms of each participant. Our goal is to utilize a dual-branch input pipeline, where each separate branch learns the gait features of each individual, aggregating the gait sequences of two different individuals to generate a complete dual-person gait sequence. Experiments conducted
发表于 2025-3-29 12:30:05 | 显示全部楼层
发表于 2025-3-29 16:33:32 | 显示全部楼层
https://doi.org/10.1007/978-3-642-95399-6or image classification tasks, resulting in performance degradation. Attention mechanisms can effectively improve the expressiveness of models, but most attention modules in recent studies are designed to be complex to achieve better performance. We expect to learn high-level semantic features with
发表于 2025-3-29 23:37:16 | 显示全部楼层
发表于 2025-3-30 02:48:07 | 显示全部楼层
发表于 2025-3-30 07:44:36 | 显示全部楼层
Vom Kontenrahmen zum Kontenplan,els. Existing defense methods employ adversarial triplets to improve adversarial robustness but sacrifice benign performance. In this paper, we propose a novel framework for deep metric learning by introducing the concept of “Attention-Aware Knowledge Guidance”, dubbed AAKG, which not only enhances
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 10:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表